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Abstract. Lunar laser ranging has provided many of the best tests of gravitation

since the first Apollo astronauts landed on the Moon. The march to higher precision

continues to this day, now entering the millimeter regime, and promising continued

improvement in scientific results. This review introduces key aspects of the technique,

details the motivations, observables, and results for a variety of science objectives,

summarizes the current state of the art, highlights new developments in the field,

describes the modeling challenges, and looks to the future of the enterprise.
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Figure 1. Lunar Laser Ranging in action at the Apache Point Observatory in
southern New Mexico. Photo by Dan Long.

1. The LLR concept

Since 1969, lunar laser ranging (LLR) has provided high-precision measurements of the

Earth-Moon distance, contributing to the foundations of our knowledge in gravitation

and planetary physics. While being the most evident force of nature, gravity is in fact the

weakest of the fundamental forces, and consequently the most poorly tested by modern

experiments. Einstein’s general relativity—currently our best description of gravity—is

fundamentally incompatible with quantum mechanics and is likely to be replaced by

a more complete theory in the future. A modified theory would, for example, predict

small deviations in the solar system that, if seen, could have profound consequences for

understanding the universe as a whole.

Utilizing reflectors placed on the lunar surface by American astronauts and Soviet

rovers, LLR measures the round-trip travel time of short pulses of laser light directed to

one reflector at a time (Fig. 1). By mapping the shape of the lunar orbit, LLR is able to

distinguish between competing theories of gravity. Range precision has improved from

a few decimeters initially to a few millimeters recently, constituting a relative precision

of 10−9–10−11. Leveraging the raw measurement across the Earth-Sun distance provides

another two orders of magnitude for gauging relativistic effects in the Earth-Moon-Sun

system.

As LLR precision has improved over time, the technique has remained at the cutting

edge of tests of gravitational phenomenology and probes of the lunar interior, and has

informed our knowledge of Earth orientation, precession, and coordinate systems. LLR

was last reviewed in this series in 1982 [1]; this update describes the key science drivers

and findings of LLR, the apparatus and technologies involved, the requisite modeling
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techniques, and future prospects on all fronts. LLR is expected to continue on its

trajectory of improvement, maintaining a leading role in contributions to science. Other

recent reviews by Merkowitz (2010) [2] and by Müller et al. (2012) [3] complement the

present one. The Merkowitz review, like this one, stresses gravitational tests of LLR,

but with greater emphasis on associated range signals. Next-generation reflector and

transponder technologies are more thoroughly covered. The Müller et al. review (for

which this author is a co-author) offers a more complete history of LLR, has statistics

on the LLR data set, and provides greater emphasis on geophysics, selenophysics, and

coordinate systems.

This review is organized as follows: Section 1 provides an overview of the subject;

Section2 reviews the science delivered by LLR, with an emphasis on gravitation;

Section 3 describes current LLR capabilities; Section 4 relates recent surprises from LLR,

including the finding of the lost Lunokhod 1 reflector and evidence for dust accumulation

on the reflectors; Section 5 treats the modeling challenges associated with millimeter-

level LLR accuracy; and Section 6 offers possible future directions for the practice

of LLR. An Appendix contains a list of acronyms used in the text. Some single-use

ancillary acronyms are only defined in the Appendix in order to minimize unimportant

interruptions.

1.1. Current Science Results

A detailed description of the science capabilities of LLR is deferred until Section 2. For

the purposes of introducing the motivation behind the effort, LLR provides the following

leading tests and measurements:

• the strong equivalence principle to η ≈ 3× 10−4 sensitivity [4, 5];

• time-rate-of-change of the gravitational constant to Ġ/G < 10−12 yr−1 [6, 7, 8];

• geodetic precession within 0.3% of general relativity prediction [3];

• gravitomagnetism within ∼ 0.2% of general relativity prediction [9, 10];

• the 1/r2 law to ∼ 2× 10−11 times the strength of gravity at 108 m scales [11, 12];

• the presence of a liquid core in the Moon having a radius of ∼ 350 km [13, 14].

LLR also provides checks on preferred frame effects [15, 16], and Newton’s third law [17].

LLR may additionally open a window into the possible existence of extra dimensions via

cosmological dilution of gravity [18, 19]. Besides the strong equivalence principle, LLR

tests the weak equivalence principle at the level of ∆a/a < 1.3× 10−13 [20]. Laboratory

tests of the weak equivalence principle reach similar levels [21], but result in more incisive

tests by having the freedom to choose more optimal mass pairs than the iron-silicate

pairing dictated by the Earth-Moon system. Finally, LLR is used to define coordinate

systems, probe the lunar interior, and study geodynamics [22]. Order-of-magnitude

advances in each of these domains is possible as the LLR technique improves from the

centimeter to the millimeter regime.
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1.2. A Quantitative Introduction

By way of introduction, this section presents representative numbers meant to portray

key aspects of the LLR technique. Some items will enter in subsequent discussion, while

others appear only here for the sake of overall familiarity.

While the semi-major axis of the lunar orbit is 384,402 km, the time-averaged

distance between Earth and Moon centers is 385,000.6 km, corresponding to 2.56 s of

round-trip light travel time. The range varies from 356,500–406,700 km, chiefly due to

a 21,000 km amplitude oscillation (27.55 d period) associated with the elliptical orbit

of the Moon (e = 0.055). Other leading oscillations appear at 3700 km (31.8 d) and

2955 km (14.76 d) due to solar perturbations. The range rate between Earth and Moon

centers may be as large as 75 m s−1, while Earth rotation is the dominant range-rate

effect, measuring 465 m s−1 at the equator.

The basic arrangement for performing lunar laser ranging is shown in Fig. 2.

Illuminating the reflectors sufficiently is a principal challenge in LLR. Even a one-

arcsecond (5 µrad) beam—limited by atmospheric turbulence—spreads to 1.9 km at

the lunar surface. This translates into a one-in-25-million chance of a photon launched

from Earth finding the Apollo 11 reflector, for instance (discussed in Section 1.3). The

return journey is even more difficult, owing to diffractive spread from the corner cube

prisms, compounded by velocity aberration. A 1 m circular aperture on Earth can expect

to receive one photon out of every 250 million emerging from the Apollo reflector. The

tangential relative motion of the Earth station with respect to the Moon introduces a

4–6 µrad velocity aberration, translating to a ∼ 2 km offset of the return pattern on

the Earth’s surface and a further reduction of the Apollo reflector signal by a factor of

0.6–0.8.

A useful conversion to memorize is that 1 mm of separation translates into 6.67 ps

of round-trip travel time, or inversely 1 ns of round-trip time maps to 0.15 m of one-way

distance.

1.3. Reflectors and Divergence-Imposed Requirements

We now review the instruments on the Moon and the requirements they impose on the

ground apparatus. Example performance is also presented in Section 3.2.

LLR relies on a total of five passive reflectors left on the surface of the Moon

roughly 40 years ago (Fig. 3). The Apollo arrays—landed on the Apollo 11, Apollo 14,

and Apollo 15 missions—consist of, respectively, 100, 100, and 300 3.8 cm diameter

fused silica corner cube reflectors employing total internal reflection. The Luna 17 and

Luna 21 soviet missions to the Moon landed the Lunokhod 1 and Lunokhod 2 rovers,

each carrying identical reflector arrays built by the French. These arrays consist of 14

corner cubes each having a triangular edge length of 11 cm and silvered rear surfaces.

The nominal response of the Lunokhod arrays falls between that of the 100-element and

300-element Apollo arrays. Pictures of both types of arrays appear in Fig. 4.

Lunar libration changes the apparent tilt of the reflectors with respect to the Earth-
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1.  The laser beam emerges from a launch telescope, usually �lling the aperture.
2.  A 100 mJ pulse contains about 3x1017 photons.
3.  A 100 ps pulse width translates into a few-cm thick light pulse.
4.  Atmospheric turbulence quickly imposes arcsecond-scale divergence.
5.  One arcsecond translates to 1.8 km at the Moon.
6.  Roughly 1 in 25 million launch photons will strike the small re�ector.

7.  Di�raction from individual corner cubes spreads the return beam.
8.  Apollo corner cubes e�ectively impart 7.5 arcseconds of divergence.
9.  The return beam footprint on Earth is approximately 15 km across.
10. A 1 m aperture on Earth will collect 1 in 2x108 of the returned photons.
11. Divergence is therefore responsible for a loss factor around 1016.

12. Round-trip travel time ranges from 2.33 to 2.71 seconds.
13. At 20 pulses per second, ~50 are in �ight at a time.

Figure 2. Cartoon schematic of LLR technique and divergence-related
challenges.

A11

A14

A15 L2

L1

Figure 3. Positions of the five reflectors on the lunar surface. “A” stands for
Apollo, while “L” stands for Lunokhod.

Moon line of sight, seen in Fig. 5 filling out a rectangle spanning ±8.1◦ in longitude and

±6.9◦ in latitude—not including the Earth topocentric correction, which can modify
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Figure 4. A portion of the Apollo 15 reflector (left; courtesy NASA), consisting
of 300 corner cube reflectors each 3.8 cm in diameter. All Apollo reflectors are
mounted in a similar aluminum tray, except that the Apollo 11 and Apollo 14
reflectors are 100-element arrays arranged in a 10×10 square pattern. At right
is the Lunokhod reflector design (courtesy the Lavochkin Association).

effective libration by as much as a degree. The median total libration is 6.5◦, and can

be in excess of 10◦ (Fig. 6), again ignoring topocentric considerations. As a result,

the return pulse acquires a temporal spread due to the fact that some corner cube

reflectors are closer to the observer, while others are farther. For the Apollo 15 array,

the full-width at half-maximum (FWHM) can approach 1 ns (150 mm one-way), or a

root-mean-square (RMS) in excess of 300 ps. A typical case of 200 ps RMS corresponds

to 30 mm of one-way distance, and thus requires 900 measurements (photons) in order

to achieve a statistical uncertainty in the neighborhood of 1 mm. Thus precision LLR

demands hundreds or thousands of photons in order to overcome the libration/reflector-

imposed measurement uncertainty.

The signal loss in the two-way laser link is staggeringly high, generally amounting

to a loss factor in the neighborhood of 1018. Beam divergence on both the up-leg and

down-leg result in a signal strength that depends on the inverse-fourth power of distance.

The up-leg divergence is limited by atmospheric turbulence (seeing), so that one

may not generally expect better than about 1 arcsec (5 µrad) divergence, translating

to about 4 × 10−8 throughput onto the smaller Apollo 11 and 14 arrays. The down-

leg divergence is set by diffraction from the corner cubes. Total internal reflection

corner cubes like those used for Apollo produce a central irradiance that is 0.15 times

that of a simplistic top-hat illumination pattern of angular diameter λ/D, where λ is

the wavelength and D is the corner cube diameter. The result is that a 1 m circular

aperture on Earth receives about 5 × 10−9 of the flux incident on the reflector at a

wavelength of 532 nm. The net throughput is then ∼ 2 × 10−16 for a 1 m aperture,

scaling as a2/λ2, where a is the aperture diameter. Multiplying by typical optical system

and atmospheric throughputs (traversed twice), together with filter transmissions and
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Figure 5. Libration pattern for the Moon over 18.6 years, at 12 h samples.
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Figure 6. Total libration frequency histogram, ignoring topocentric
contributions.

detection efficiencies, total throughput tends to be in the range of 10−18. An energetic

pulse of laser light having a pulse width in the neighborhood of 100 ps might be 100 mJ,

containing 3 × 1017 photons at green wavelengths. The result is that LLR invariably

operates in the single-photon detection regime.

The ground apparatus therefore benefits from having:

• a powerful laser, typically a few Watts, with substantial pulse energy;

• sub-arcsecond intrinsic divergence, meaning a launch beam diameter exceeding
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Figure 7. Impact of librations on the root-mean-square temporal variation
contributed by the Apollo 15 reflector.

10 cm;

• sub-arcsecond pointing and tracking capability;

• a large collection aperture for the return;

• aggressive filtering in the temporal, spatial, and wavelength domains.

Additionally, the laser pulsewidth should be < 100 ps so that it does not compete with

the reflector-induced spread in the overall error budget. Many of the requirements are

naturally satisfied by using an astronomical telescope as both the launch and receive

instrument in a so-called mono-static arrangement. For perspective, a 1 W laser limited

to 1 arcsec divergence by the atmosphere will return approximately 10−16 W m−2 to

the ground, translating to a 19th magnitude source viewed through a 100 nm wide

broadband filter. Meanwhile, the full moon reaches −13 mag, or about 1013 times

brighter. More fairly, the surface brightness of the full moon is about 3 mag arcsec−2,

so that an aperture (spatial filter) spanning four square arcseconds admits 107 times

more background than signal, or a signal-to-background ratio (SBR) around 10−7. A

wavelength filter having a 1 nm passband increases the SBR to ∼ 10−5, and temporal

filtering at the 1 ns level compared to a 50 ms repetition rate (20 Hz) carries a factor

of 5 × 107 for a net SBR≈ 500. Clearly, the temporal filter is the most effective of the

three. Missing from this discussion is the apparent degradation of the lunar reflector

response [23], reduced by a factor of ten across the board, and an additional factor of

ten at full moon (discussed in Section 4.2).

An example return from Apollo 15 is shown in Fig. 8, demonstrating the effect of

libration as well as the high SBR recently achieved in LLR measurements. A histogram

of the same data is presented in Fig. 9, in which it is seen that the temporal width of the
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lunar return is almost completely determined by the libration-induced reflector spread.

Details on the apparatus used to acquire these data can be found in Section 3.2.
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Figure 8. 8000-shot measurement to Apollo 15 on 2010 March 23, showing
a 12 ns portion of the 100 ns return window. This is the first run of the
night, demonstrating a typical fast acquisition and optimization of the signal.
Background photons and detector dark events are scattered below (before) the
lunar return. A diffusion process in the detector contributes to a “tail” of late
responses after the lunar return. It is typical for the timing of the return to
differ from an approximate prediction by ∼ 1 ns, as seen here. The temporal
thickness of the Apollo 15 return is due to the finite size of the slightly-tilted
reflector, as seen more clearly in Fig. 9.

1.4. Fundamental Measurement and World Lines

It is important to understand the fundamental measurement performed by LLR. After a

brief description in this section, a more detailed treatment may be found in Section 5.1.

A stable clock provides a frequency reference by which time intervals may be precisely

measured. Time transfer techniques—usually via the Global Positioning System

(GPS)—guarantee long-term frequency stability and synchronization with atomic clock

ensembles around the globe.

The core measurement consists of recording two event times—corresponding to

photon launch and detection—against the local clock. The launch time is generally

gauged by measuring the return from a local corner cube mounted at the telescope

exit aperture, heavily attenuated to the single-photon level so that the same detector

and timing system may be used for both the local (fiducial) and remote (lunar) photon

returns. A constant offset between the Earth-fixed axis intersection of the telescope and

fiducial corner cube is added to each range measurement. In order to achieve millimeter-

level precision, the absolute time only needs to be accurate at the microsecond level

(Earth rotation modifies the Earth-Moon distance by ∼ 0.4 mm in 1 µs), while the
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Figure 9. Histogram of the lunar return from Fig. 8 (left), along with a
fiducial measurement reflecting the system performance (right). A functional
fit to the fiducial return (from a local corner cube) is convolved with
the trapezoidal shape resulting from the total libration—lunar plus Earth
topocentric correction—at the time of observation to make the fit line for
the lunar return. The FWHM and RMS of each distribution is given, along
with the number of contributing photons and a measure of centroiding ability
given by statistical reduction of the RMS by

√
N , expressed in picoseconds and

millimeters.

relative time must be understood at the few-picosecond level. The latter requirement

translates to frequency stability at the 10−12 level over the course of a few seconds.

Because all massive solar system bodies influence the Earth-Moon range, the

analysis is most conveniently performed in the solar system barycenter (SSB) frame.

The measured times are transformed into SSB coordinates using standard time

transformation techniques—as outlined, for example, by Moyer (1981) [24]—primarily

consisting of adjustments to account for velocity-induced time dilation and gravitational

redshift resulting from the solar potential. Accounting for body figures and rotation of

Earth and Moon (and the solar J2), a fully relativistic (Einstein-Infeld-Hoffmann: EIH)

equation of motion is numerically integrated, varying input parameters—chiefly initial

conditions—to search for dynamical world-lines (Fig. 10) of the relevant bodies that

satisfy the round-trip light propagation measurements in the SSB frame. Parameters

in the relativistic model allowing departures from the specific prescription of general

relativity (GR) indicate deviations from GR. The technique is more fully described in

Williams et al. (1996) [25] and Müller et al. (2008) [26]. Simultaneous numerical

integration of lunar rotation is critical for computing consistent dynamics, and will be

treated further in Section 2.2.1.
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Figure 10. Schematic of fundamental LLR measurement. The Earth and Moon
move through the SSB frame, influencing each other and being influenced by
other solar system bodies (e.g., the Sun, Jupiter). A light pulse travels a null
geodesic from the Earth to the Moon and back, while the Earth clock ticks off
a proper time, ∆τ = τ2 − τ1. The event times are transformed into the SSB
frame (t1 and t3) and the entire solar system model is adjusted (including the
bounce time, t2) until the various world lines are made to match the entire set
of LLR measurements.

2. Science from LLR

Here we present a more comprehensive account of the science delivered by LLR than

was introduced in Section 1.1. First, we look at gravitation, including the equivalence

principle, time-rate-of-change of Newton’s G, gravitomagnetism, geodetic precession,

and the inverse-square law. Next, we briefly address the lunar interior and geophysical

concerns.

2.1. Relativity and Gravity

The concordance of astrophysical measurements in the last 15 years—the anisotropy

scale of the cosmic microwave background [27, 28, 29, 30, 31], the distance measurements

of Type Ia supernovae [32, 33], the gravitational behaviors of galactic superclusters [34],

and the power spectrum of large-scale structure [35]—point to the surprising conclusion

that the expansion of the universe is accelerating, implying some form of a fundamentally

new gravitational phenomenon. The cosmological acceleration could be due to a scalar

field that produces effects similar to those associated with the “cosmological constant,”

originally introduced into the relativistic field equations by Einstein. A scalar field would

likely couple to the gravitational field in such a way as to produce a departure from the

equivalence principle (EP) [36], and would introduce time variations in the fundamental

coupling constants of nature [37]. EP and Ġ tests therefore have discovery potential with

a very broad reach, and in fact provide some of the most sensitive low-energy probes for
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new physics. In light of recent discoveries, it is important that scientific inquiry is not

restricted to current theoretical expectations, but rather that every available avenue for

testing the nature of gravity is examined.

The lunar orbit offers a pristine laboratory for testing gravity, as non-gravitational

effects on the orbit begin to show up only at the millimeter level. Moreover, the Moon

is far enough from the Earth to be dominated by solar gravity, so that the Earth

and Moon may each be considered to be in solar orbits. This fact makes the Earth-

Moon-Sun system useful as a probe of the equivalence principle (and other relativistic

phenomena) at scales of 1 AU—extending the baseline against which to compare the

raw measurement precision.

We highlight here some of the contributions to gravitational physics from LLR.

The list is not complete, but provides a sense of the cornerstone capabilities. Most of

these science results are based on modeling that currently produces post-fit residuals

of measured data in the neighborhood of 2 cm, so that millimeter-quality data could

in principle improve current limits by an order of magnitude given commensurate

improvements in modeling (see Section 5).

2.1.1. Equivalence Principle The simplest prediction of Einstein’s equivalence

principle—the universality of free-fall—is one of the most precisely tested principles

in all of physics. Yet there are strong motivations for extending the tests and pushing

their precisions even higher. The EP can be decomposed into two key forms. The weak

form of the EP (WEP) applies to the gravitational properties of all forms of mass-energy

except for gravity, while the strong EP (SEP) extends the WEP to include gravity itself.

The Earth-Moon-Sun system is currently the best available probe of the SEP, first

pointed out by Nordtvedt [38, 39, 40]. From the vantage point of the EP, the Earth

and Moon are test bodies that differ in two important ways. First, the Earth’s mass

has a fractional contribution from gravitational self-energy (4.6× 10−10 ) that is about

20 times greater than the corresponding measure for the Moon—allowing LLR to test

the SEP. Second, the Earth has a massive iron-nickel core while the Moon does not—

making LLR sensitive to a WEP violation as well. Laboratory EP tests of Earth-like

and Moon-like objects falling toward the sun can be used to distinguish between an SEP

and a WEP violation [21].

LLR tests the SEP by measuring the difference in the accelerations of the Earth

and Moon toward the Sun. In the presence of a differential acceleration, the orbit of the

Moon—from our perspective on the Earth—would appear to be displaced, or polarized,

toward or away from the Sun. The range signal would take the form

∆r ∼= 13η cosD meters

where D = (ω − Ω)t is the lunar orbit’s synodic phase‡ having a period of 29.53 days,

with D = 0 corresponding to new moon [41]. The parameter η is a theory-dependent

‡ The synodic phase of the Moon describes its angle with respect to the Earth-Sun line, thus referring

to the familiar illumination cycle of lunar phases.
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dimensionless coefficient sensitive to almost every post-Newtonian feature of the theory.

Although η vanishes in general relativity, it generally does not in alternative theories.

But independent of any theory, this test of the SEP addresses a very basic and important

question—what is the weight of gravity itself? It tests a crucial non-linear property of

gravity: how gravity produces energy that itself gravitates.

The metric models by Damour and Nordtvedt [42] describe a relaxation of scalar

field strength that today would produce SEP differential accelerations between 5×10−17

and 10−13. The present limit on differential acceleration is ∆a/a ≈ ±1.3 × 10−13

[20, 4, 5], corresponding to a test of the SEP at the level of |η| < 3 × 10−4, given

the self-energy fraction of the Earth. Millimeter-quality ranging stands to improve

sensitivity of the SEP test by one order of magnitude, measuring ∆a/a to a precision

of ±10−14 and reaching into the theoretically motivated range indicated above. The

closest competitor comes from pulsars. A composite of 27 pulsars places a 1-σ limit on

the SEP of 2.3× 10−3—roughly an order of magnitude shy of the LLR result [43, 44].

2.1.2. Time-rate-of-change of G A secular change in the gravitational constant, G,

would produce secular changes in the lunar mean distance and the orbital period

(Kepler’s third law), as well as in the angular rate of the Earth about the Sun. While

the orbital radius change results in a range signal that varies linearly in time, the change

in orbital period leads to a quadratic evolution of the Moon’s mean anomaly (phase).

It is this quadratic dependence that most powerfully constrains Ġ. Here, the long time

span of LLR measurements becomes important, limiting Ġ/G at the impressive level of

7× 10−13 yr−1 [6] and 9× 10−13 yr−1 [7]—the best available experimental results.

Recently Steinhardt and Wesley examined the constraints that observations and

experiment place on a broad class of theories that attempt to explain dark energy in

the context of extra-dimensions [45]. They find that if current constraints on both Ġ

and the value and rate-of-change of the equation-of-state parameter, w, improve by a

factor of two, such ideas could be ruled out at the 3σ level. In their analysis, Steinhardt

and Wesley use a 1994 pulsar timing limit for Ġ of 5× 10−12. LLR already exceeds this

limit by an order of magnitude. A recent work questions the validity of several previous

published pulsar limits on ˙G/G—including the 1994 result—finding instead trustworthy

limits in the neighborhood of 20×10−12 per year [46]. However, a new report puts forth

a limit at 1.6× 10−12 per year, approaching levels tested by LLR [47].

2.1.3. Gravitomagnetism, Geodetic Precession, and other PPN Tests LLR tests

a number of basic relativistic phenomenologies—independent of whether gravity is

described by a metric theory. These phenomena include gravitomagnetism, geodetic

precession, and the consequences of preferred frames. Many such phenomena can be

cast into the Parameterized Post-Newtonian (PPN) framework [48, 49]: a generalized

metric description of gravity for which general relativity is a special case. The most

prominent PPN parameters are γ, describing the amount of curvature produced per

unit mass, and β, describing the non-linearity of gravity. Both of these are unity in
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general relativity. The best constraint on γ comes from Doppler ranging to Cassini:

|γ−1| < 2.3×10−5 [50]. β is best constrained by LLR tests of the SEP via the identity:

η ≡ 4β − γ − 3. Combining the Cassini result for γ with the LLR result for η yields

|β − 1| < 1× 10−4 [20].

Preferred frame effects, such as those codified by PPN parameters α1 and α2, are

also tested by LLR, currently at the level of 9× 10−5 and 2× 10−5, respectively [6, 15],

although Nordtvedt obtains a 10−7 limit on α2 based on the long-term orientation of

the spin axis of the Sun [16].

Gravitomagnetism is a generic consequence of any mass in motion. As the

Earth orbits the Sun, its gravitomagnetic field exerts a Lorentz force on the Moon.

Eliminating the gravitomagnetic term from the EIH equations of motion would result in

experimentally-absent six-meter-amplitude periodic disturbances at both synodic and

twice-synodic frequencies [9]. LLR constrains gravitomagnetism—the root of “frame

dragging”—to < 0.2% precision, as confirmed by a covariant analysis [10]. Within the

PPN context, gravitomagnetism reduces to non-competitive checks on parameters γ and

α1. By comparison, the Gravity Probe-B experiment obtained a final precision on the

gravitomagnetic effect of 19% [51], and laser ranging to the LAGEOS satellites produce

results in the 5–40% range [52, 53]. Pulsars may soon contribute gravitomagnetic limits

as well, although no pulsar results have been published to date.

Gravitomagnetism, at its core, is a frame-dependent phenomenology. As such, the

assertion that LLR is sensitive to gravitomagnetism has been questioned from the point

of view that one may nullify the effect by performing LLR analysis in an Earth-centered

frame [54, 55]. Leaving aside complications arising from the fact that the resulting frame

is non-inertial (not asymptotically flat), the attempt to separate gravitomagnetism into

“intrinsic” and “gauge-dependent” varieties is, in the author’s view, as specious as

it would be for the magnetic field of electromagnetism: there are not two physically

distinct flavors of magnetic fields. A similar argument could be made that performing

analysis of LAGEOS or Gravity Probe-B measurements of Lense-Thirring or Schiff

precessions, respectively, in a frame rotating with the Earth would likewise eliminate

the source of gravitomagnetism. Obviously other frame-dependent phenomenologies

should intercede to produce the same observational result, but this merely amplifies the

notion of gravitomagnetism as part of the frame-transformation package. Keeping in

mind that converting measurements into the SSB frame for LLR analysis reduces to a

straightforward matter of time transformation, as summarized in Section 1.4, the lack of

anomalous gravitomagnetic signatures when evaluating LLR data in the context of the

EIH equations of motion essentially stands as confirmation that gravitomagnetism plays

its expected role in frame transformation [56]. The appearance of the PPN preferred

frame parameter, α1, in the coefficient for the gravitomagnetic term in the equations of

motion further clarifies this association.

Geodetic precession can be understood as the effect of parallel transport of a fixed

direction—as manifested by a gyroscope or orbital axis, for instance—around the curved

space surrounding a central body. The curvature results in a migration of the axis
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direction relative to the background inertial space upon completing an orbit. One

revolution around the Sun at the distance of the Earth produces a directional offset

of 19.2 milliarcseconds. This precession rate in the orientation of the lunar orbit is

confirmed by LLR [25, 7], presently at the 0.3% level, corresponding to about 60 µas yr−1

[3]. Geodetic precession is primarily another measure of PPN γ. The Gravity Probe-B

mission finalized a result on geodetic precession at the 0.28% level. Pulsar timing has

thus far confirmed geodetic precession at the 13% level [57].

2.1.4. Inverse Square Law, Extra Dimensions, and other Frontiers Any deviation

from the Newtonian 1/r2 force law produces a precession of orbital perigee. LLR’s

measurement of any anomalous precession rate of the lunar orbit limits the strength of

Yukawa-like long-range forces with ranges comparable to the ∼ 108 m scale of the lunar

orbit to < 2 × 10−11 times the strength of gravity [11]. This is the strongest available

constraint on the inverse square law at any length scale [12].

Measurement of the precession rate can also probe a recent idea (called DGP

gravity) in which the accelerated expansion of the universe arises not from a non-zero

cosmological constant but rather from a long-range modification of the gravitational

coupling, brought about by higher-dimensional effects [18, 19, 58]. Even though the

lunar orbit is far smaller than the Gigaparsec length-scale characteristic of the anomalous

coupling, there would be a measurable signature of this new physics, manifesting itself as

an anomalous precession rate at about 5µas yr−1—roughly a factor of 10 below current

LLR limits, and potentially reachable by millimeter-quality LLR.

Another example of new tests that LLR can perform is represented by the Standard

Model Extension (SME), in which Lorentz-violating terms are introduced into the

Standard Model of physics in order to generalize it [59]. Expressed in the gravitational

sector [60], the SME exerts some influence on the lunar orbit [61]. Accordingly, LLR

has been used to place constraints on the relevant SME parameters[62].

Offering a high-precision measurement of a clean dynamical system, LLR

constitutes a comprehensive check on gravitational phenomenology. As such, we can

expect that LLR will continue to exhibit sensitivity to future theories that challenge the

foundation of general relativity.

2.2. Lunar and Earth Physics

While tests of gravitation constitute a compelling suite of scientific motivations for

pursuing LLR, details of the Earth and Moon also influence the range measurement and

as such open lines of inquiry into the natures of these bodies. A more detailed treatment

of these aspects appears in another review [3], and are here briefly summarized.

2.2.1. The Lunar Interior By virtue of the fact that the Moon’s orientation, orbit,

and tidal deformation are influenced by the interaction of its internal mass structure
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with torques and forces imposed upon it, LLR data can expose properties of the lunar

interior otherwise unavailable.

The Moon is tidally locked to the Earth, with the equatorial bulge elongated in the

Earth-Moon direction, resulting in a triaxial mass distribution—the associated moments

of inertia labeled and ordered as A < B < C. Torques on this non-spherical body

from the Earth, Sun, and larger/closer planets impose physical librations, or rocking,

of approximately ±120 arcsec in both longitude and latitude. This is distinct from

the much larger “optical” libration caused by Earth’s changing vantage point of the

Moon in its elliptical, inclined orbit. At the surface of the Moon, the physical librations

translate into ∼ 1000 m amplitude motions (Fig. 11), allowing centimeter-level LLR to

gauge the effect at the ∼ 10−5 level. Sensitivity to lunar physical librations has enabled

determination of relative differences in the principal moments of inertia, β ≡ (C−A)/B

and γ ≡ (B − A)/C (∼ 6.3 × 10−4 and ∼ 2.3 × 10−4, respectively), to the 0.05%

level. In addition, the lunar quadrupole moment J2 couples to the lunar orbit and is

fit from LLR data. These three quantities together provide the best set of independent

measurements by which to determine the principal moments of inertia. For instance,

the polar moment, C, is found to be 0.393± 0.001 times MR2, where a uniform density

sphere would exhibit a numerical factor of exactly 0.4 [63]. The Earth, by contrast, is

more centrally concentrated with a moment of inertia factor of 0.33.
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Figure 11. Physical librations of the Moon over 18.6 years, translated into
displacement at the lunar surface. The main oscillation in longitude has a one-
year period, while the latitude exhibits a six year beat period between the lunar
anomalistic month and the draconic month.

If the Moon were a perfect fluid body, the tidal bulge caused by the Earth would

have a peak-to-trough amplitude of 19 m. However, the Love number§, h2, for the Moon

§ Love numbers describe the degree to which a body deforms relative to that of a perfect fluid body.
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is very small, at about 0.04 (contrast to Earth h2 ≈ 0.59), so the total amplitude is held

to less than a meter. Optical librations limit the motion of the bulge relative to the

lunar surface to ±8◦, so that any given spot on the Moon sees tidal variations only

at the level of ∼ 0.1 m, peaking at 45◦ from the Earth-Moon line. Varying distance

between Earth and Moon contributes an additional ±0.1 m deformation, aligned with

the bulge [63].

The most sophisticated and successful lunar interior model resides at the Jet

Propulsion Laboratory, for which the remainder of this paragraph applies. In addition

to J2, β, and γ, any combination of third-order multipole coefficients may be fit from

LLR data. Higher order terms and third-order terms that are not fit derive from Lunar

Prospector data. In the numerical integration of lunar rotation, degree-2 Love numbers

are considered, plus a time delay for lunar tides. Dissipation is represented by a term

for friction at the core-mantle boundary and five out-of-phase periodic libration terms

address the frequency-dependence of tidal dissipation. At the monthly tidal period,

the dissipation is found to result in a rather low resonant quality factor, Q ≈ 33 ± 4.

For extensive details on the dissipation model, and treatment of physical librations, see

Williams et al. (2001) [13], and Rambaux and Williams (2011) [64], respectively.

2.2.2. Earth Orientation, Precession, and Coordinate Frames Evaluating the center-

to-center Earth-Moon range for access to gravitational physics relies on detailed

knowledge of the three-dimensional orientation of the Earth at the time of observation.

LLR can therefore contribute to our knowledge and understanding of the responsible

phenomenologies. Earth orientation can be described as three Euler angles, broken into

rotation about the polar axis, and two angles representing the direction of said axis

on the sky. Additionally, the rotation axis migrates with respect to the geometrical

surface on a 10 m scale over approximately annual periods (this includes the Chandler

wobble‖; see Fig. 12). The trajectory of the axis on the sky is largely deterministic,

described by precession and nutation¶ and related to known torques acting on the

Earth’s figure. Nutation is dominated by an 18.6 year term relating to precession of the

lunar orbital plane, and amounting to the equivalent of 300 m at the Earth’s surface.

Earth’s slowing rotation due to tidal dissipation (accompanied by an LLR-determined

3.8 cm yr−1 egress of the lunar orbit [65]) results in a secular phase offset in the rotation

angle, also influenced by periodic phenomena like tides, and by aperiodic factors like

angular momentum exchange between ocean, atmosphere, and land.

Rigid bodies would have Love numbers near zero, while fluid bodies have Love numbers near unity.

The primary Love numbers, h, l, and k describe vertical displacement, horizontal displacement, and

the degree to which the potential is modified by the redistribution of mass, respectively.
‖ The Chandler wobble is a free-mode (torque-free) nutation of the Earth’s rotation axis due to Earth’s

non-axisymmetric mass distribution.
¶ Precession is the 26,000 year period migration of the Earth’s polar axis with respect to inertial space,

sweeping out a cone perpendicular to the ecliptic plane defined by Earth’s orbit about the Sun. Nutation

is the much faster wobble of the polar axis about the smooth precession trajectory due primarily to

lunar and solar torques on the Earth’s equatorial bulge.
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Figure 12. Migration of Earth’s polar axis with respect to the body over 20
years, in one-day samples.

In practice, all five orientation parameters must be supplied or augmented by

observational measurements or corrections. Nutation adjustments tend to be less than

1 m (Fig. 13). UT1, characterizing the rotational state relative to atomic time, can

vary by as much as 3.5 ms in a day (accumulating to almost one second per year

around 1995), translating to 1.6 m at Earth’s surface (Figs. 14 and 15). The point,

again, is that LLR is sensitive to each of the Earth orientation parameters, so that the

LLR dataset can be used to supplement our understanding of these phenomena (e.g.,

Biskupek and Müller 2009 [66]). LLR data are therefore routinely combined with data

from Very Long Baseline Interferometry (VLBI), GPS, satellite laser ranging (SLR),

and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) in

the Earth orientation parameters published by the International Earth Rotation and

Reference System Service (IERS), who also periodically publish self-consistent, evolving

methods for computing Earth orientation [67].

Finally, LLR also contributes to establishment of coordinate systems, especially in

defining the relative orientation of the ecliptic and equatorial planes+. This in turn

plays a role in establishing the celestial coordinate origin, whether in the International

Celestial Reference System (ICRF) or the dynamical ecliptic/equator of J2000.0 (whose

coordinate origins differ by 17 mas). Precession and nutation are defined with respect

to the celestial frame, so that LLR’s sensitivity to the Earth axis orientation ties into

this context as well.

+ The ecliptic plane is the plane of the Earth’s orbit about the Sun. The equatorial plane is a projection

of the Earth’s equator into inertial space.
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Figure 13. Empirical nutation corrections over 20 years, relative to the
IAU1980 nutation theory, expressed in meters at the pole.
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Figure 14. UT1, the offset from Coordinated Universal Time (UTC), over
20 years. Discontinuities reflect leap seconds. Annual wiggles can be seen in
all tracks, but most clearly when the slope is smaller, as in the period from
2000–2005.

3. LLR Capability across Time

Beginning with a historical introduction, this section looks at past and current LLR

capabilities, and how the current state of the art facilitates improved scientific return

from LLR.
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Figure 15. Length of day variations expressed as the displacement of the
equator from one day to the next relative to a perfect 24-hour clock. The
net positive bias is simply a consequence of Earth’s slowing rotation due to
tidal dissipation and is related to the 3.8 cm yr−1 egress of the lunar orbit.
Large variations exist on top of this bias at a level that is important to LLR.

3.1. Brief LLR History

Less than two weeks after the landing of the first retroreflector array on the Apollo 11

mission, the first accurate laser ranges to the Moon were performed on 1969 August

1 from the 3.1 m telescope at the Lick Observatory. A few other sites around the

world demonstrated lunar ranging capability around that time, but none of these

stations—including the Lick Observatory—embarked on scientific campaigns to obtain

meaningfully long time series of accurate ranges. However, one month after the

Apollo 11 landing, a long-term effort using the 2.7 meter telescope at the McDonald

Observatory commenced ranging to the Moon [68], providing all of the scientifically

relevant observations over the next decade. The McDonald station used a ruby laser

with a 4 ns pulse width, firing at a repetition rate of about 0.3 Hz and ∼ 3 J per pulse.

This station routinely achieved 20 cm range precision, with a photon return rate as

high as 0.2 photons per pulse, or 0.06 photons per second. A typical “normal point”—a

representative measurement for a run typically lasting tens of minutes—was constructed

from approximately 20 photon returns.

In the mid 1980’s, a lunar ranging renaissance took place, with three capable

stations beginning operation. In 1984, a French station at the Observatoire de la Côte

d’Azur (OCA) [69] began collecting accurate ranges. Using a 1.5 meter telescope, a

70 ps Nd:YAG laser firing at 10 Hz and 75 mJ per pulse, OCA became the premier

lunar ranging station in the world and has contributed about half of the total range

measurements to date. From 1984–1990, a station at Haleakala in Hawaii produced
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strong returns and accurate ranges. In 1985, the McDonald operation transitioned from

the 2.7 m shared astronomical telescope to a dedicated 0.76 m telescope (also used for

satellite laser ranging) using a 200 ps Nd:YAG laser operating at 10 Hz and 150 mJ per

pulse. This station is referred to as the McDonald Laser Ranging System (MLRS) [70].

From 1990–2006, the MLRS and OCA stations were the only routine contributors to

lunar range data with characteristic return rates of 0.002 and 0.01 photons per pulse,

respectively. Normal points from the two stations typically consist of 15 and 40 photons,

respectively. More complete histories of these and other efforts (Russia, Pic du Midi,

Australia, Japan, etc.) may be found in other works [20, 22, 68].

Presently, five stations in the world exhibit LLR capability: OCA, MLRS, Apache

Point, Matera, and Wetzell—although only the first three acquire data regularly. After a

shutdown from 2005–2010, OCA is back in regular operation, although at about half its

former pace. Since 2007, the Apache Point Observatory Lunar Laser-ranging Operation

(APOLLO; for which the author is the principal investigator) has led the LLR data effort

both in terms of number of normal points and estimated range uncertainty. Averaging

about 260 measurements per year and a median statistical uncertainty per normal point

of less than 3 mm, APOLLO seeks to effect a substantial improvement in LLR tests of

gravity.

3.2. APOLLO Apparatus and Performance

This section provides a brief overview of the APOLLO apparatus and its demonstrated

performance. A full description of the apparatus can be found in Murphy et al. (2008)

[71]. APOLLO employs a laser averaging 2.3 W at 532 nm, generating 100 ps pulses

at a 20 Hz repetition rate and 115 mJ per pulse. The laser is transmitted from the

3.5 m aperture telescope at the Apache Point Observatory in southern New Mexico at

an elevation of 2.8 km. The full aperture is utilized for beam transmission. A small

portion of the outgoing beam is intercepted by a corner cube prism attached to the

telescope secondary mirror, sending light back to the receiver, attenuated to the single-

photon level and providing a precise measure of the pulse departure time. The receiver

houses a 4 × 4 avalanche photodiode (APD) array capable of high-precision timing of

single photons at a detection sensitivity around 30%. The array occupies a re-imaged

focal plane of the telescope, spanning 1.4 arcsec on a side. This arrangement results

in an oversampled point spread function, while providing spatial information useful

for tracking feedback. Photon arrivals create START pulses for a 16-channel time-to-

digital converter (TDC) with 15 ps jitter and 25 ps bins. STOP pulses to the TDC are

extracted from a 50 MHz low-phase-noise clock pulse train, and the number of clock

pulses between the STOP signal for the local corner cube return and the STOP signal

for the lunar return is counted. The master clock on which the 50 MHz pulse train

is generated uses an ovenized quartz crystal disciplined by reference to GPS so that

the 2.5 s round-trip travel time is measured against a reliable frequency standard, and

the absolute time is known far better than the microsecond level required for millimeter
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Table 1. APOLLO Random Error Budget per Photon.

Error Source RMS Error (ps) RMS Error (mm)

APD illumination 60 9

APD intrinsic < 50 < 7.5

Laser pulse 45 7

Timing electronics 20 3

GPS clock 7 1

Total APOLLO 93 14

Retroreflector array 100–300 15–45

Total random uncertainty 136–314 20–47

Table 2. APOLLO Record Rates.

Reflector Shots Photons photons/shot photons/minute rate factor

Apollo 11 5000 4784 0.96 1148 69

Apollo 14 5000 7606 1.52 1825 69

Apollo 15 5000 15730 3.15 3775 67

Lunokhod 1 5000 2070 0.41 497 —

Lunokhod 2 5000 1301 0.26 312 54

range precision. Table 1 reproduces the contributions to APOLLO’s random uncertainty

from the instrument description paper [71].

The large telescope aperture, good atmospheric seeing, and array detector together

result in high signal rates and allow confident signal optimization through pointing

corrections and velocity aberration compensation—controlled by affecting a deliberate

offset in transmitter and receiver pointing directions. Consequently, APOLLO signal

rates exceed those of previous stations by a substantial margin. Table 2 displays

APOLLO’s record performance on each reflector. Since each entry is associated with

5000-shot data runs, each transpired over approximately 250 seconds, at a 20 Hz

pulse repetition rate. The “Photons” column corresponds to detected photo-electrons,

sometimes exceeding one photon per shot, as enabled by APOLLO’s multi-element APD

detector. The “rate factor” compares APOLLO’s peak photon rate (photons/minute)

to that of the previous LLR record for each reflector, held in every case by OCA—except

for Lunokhod 1, which was first recovered by APOLLO, as described in Section 4.1.

Greater photon count is not in itself indicative of higher precision range

measurements. But to the extent that the temporal spread of the lunar return is
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dominated by the finite size of the reflector array—tilted by lunar libration—high photon

number is a necessary ingredient in reducing statistical uncertainty, as was illustrated in

Section 1.3. Two different evaluations of APOLLO’s millimeter-level performance have

been published elsewhere [72, 73].

3.3. APOLLO Advantages Translated to Science

The aforementioned signal optimization capability of APOLLO naturally translates into

faster acquisition and a higher signal rate (see Fig. 8 for an example), which enhance

the range precision and scientific usefulness of the data. But a number of derivative

advantages emerge as well, outlined here. As a general statement, systematic effects are

more easily exposed in a high-signal regime.

Foremost, APOLLO routinely ranges to four, and sometimes five reflectors in each

observing session. Typically, it is possible to make several circuits of the reflectors

within the ∼ 1 hr time allocation (Figs. 16 and 17). The result is that lunar orientation

and deformation are well-established during each session. This bestows an obvious

advantage onto understanding of the lunar interior, but also enhances the ability to

represent accurately the location and trajectory of the center of mass of the Moon—

important for testing gravitation.
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Figure 16. Distribution of normal points among the five reflectors for the
chief modern LLR stations. Reflectors are numbered in order of arrival from
0–4, corresponding to Apollo 11, Lunokhod 1, Apollo 14, Apollo 15, and
Lunokhod 2. Overlaid on each is a darker histogram representing more recent
data, the break point being 2000.0 for the longer-lived stations and 2010.0 for
the newer APOLLO. Apollo 15 dominates for all stations, being a larger, more
easily acquired target.

Having multiple detector channels essentially provides many independent

measurements: each channel receives photons from the local (fiducial) corner cube as

well as from the lunar array. One may then compare “answers” from each of the channels

to get a separate handle on measurement error. The degree to which measurements

disagree provides a check on estimated uncertainties.
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Figure 17. Number of reflectors acquired per night of observation for the chief
modern LLR stations. Shading follows the convention of Fig. 16 The mode for
the older stations has been one reflector per night (both overall, and recently),
whereas APOLLO’s nominal mode has been three reflectors, recently moving
to four.

The signal rate is high enough to permit exploration of the physical orientation of

the reflector arrays on the Moon via the evolution of the temporal response as a function

of lunar libration. This is especially effective on the larger, rectangular Apollo 15 array,

which appears to have a 2◦ azimuth offset, but otherwise nominal tilts. The smaller

Apollo arrays are consistent with nominal pointing, although probed less accurately.

Incorporating array orientation information into the data reduction routines allows a

higher fidelity fit to the observations, reducing the opportunity for systematic offsets.

Ultimately, it may be possible to elucidate spatial variability of response across the

reflector array.

4. Recent Surprises

Recent improvement in the LLR return rate has facilitated some new findings, two of

which are detailed here: first the re-discovery of a reflector that had been lost for nearly

four decades; followed by an account of evidence for degraded reflector performance.

4.1. Finding Lunokhod 1

Starting in 2008, APOLLO devoted some observing time to searching for the lost

Lunokhod 1 reflector. Accurate coordinates were not available, so searches were

referenced to the best-guess coordinates of the time [74]. Given a∼ 2 km beam footprint,

the 5 km positional uncertainty can be scanned in a matter of minutes, so that angular

parameter space was not the main limitation. Rather, the 100 ns timing gate used for the

APD detector array translates into a ±7.5 m line-of-sight uncertainty, intersecting the

tilted lunar surface at the position of Lunokhod 1 in a ∼ 20 m swath. Therefore searches

concentrated exclusively on the temporal domain while pointing at the nominal position

and allowing natural pointing excursions to provide some degree of angular coverage.
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The Lunar Reconnaissance Orbiter (LRO) helped in three ways. Most indirectly,

corner cube prisms were placed on LRO in the hope that APOLLO could obtain 2-way

range measurements to the spacecraft. This prompted APOLLO to develop a wide-

gate (800 ns) mode to cope with positional uncertainty of LRO. Second, LRO’s Lunar

Orbiter Laser Altimeter (LOLA) provided an accurate radial coordinate of the plain on

which Lunokhod 1 sits. But by far the most important contribution was high-resolution

imaging, identifying the rover in 2010 March, and providing coordinates accurate to

approximately 100 m (Fig. 18).

Figure 18. Two Lunokhod rovers, one of which is pictured at left, were landed
and operated on the lunar surface, both possessing a retroreflector array (visible
as a tilted tray protruding from the rover body at far left; image courtesy the
Lavochkin Association). Any records of successful ranging to the first rover
were lost to the international community, so that accurate coordinates were
unknown, and nearly 40 years passed without range measurements. In 2010
March, NASA’s Lunar Reconnaissance Orbiter Camera (LROC) obtained the
image at right, locating the rover (arrowed) to approximately 100 m accuracy.
Successful ranging has thenceforth been possible, the reflector appearing to be
in better health than its twin on the Lunokhod 2 rover.

On 2010 April 22, APOLLO got a strong return from the Lunokhod 1 reflector,

appearing 270 ns later than the time prediction based on the LRO-provided coordinates.

Recording about 2000 photons in the initial 10,000 shot run, Lunokhod 1 had instantly

outperformed the best photon yield APOLLO had seen over five years of observing the

Lunokhod 2 reflector (in 44 prior measurements). Since this time, the position—off from

the earlier working estimate by 5 km, and off from the LRO-provided coordinates by

100 m—has been refined to the centimeter level [75].

The Lunokhod 1 reflector is located 50◦ from the selenographic coordinate origin,

making it the farthest reflector from the apparent lunar center: about twice as far

as the Apollo reflectors (Fig. 3). This makes Lunokhod 1 a more sensitive probe of

lunar orientation than the other reflectors. Moreover, its location allows sensitivity to

librations in both latitude and longitude, while the Apollo reflectors lie close to the
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equator or prime meridian, resulting in each being mostly sensitive to librations in only

one principal dimension.

4.2. Reflector Degradation

Despite confident optimization of telescope pointing, velocity aberration correction, laser

beam divergence, and telescope focus (see Section 3.2), the APOLLO link budget has

never matched its theoretical potential—falling short by an order of magnitude, even

on the best nights [76]. This appears to be true for other LLR stations as well, based

on comparing performance to expectations with respect to system parameters. More

telling is the observation that the signal level near full moon phase drops by another

order of magnitude [23]. Examination of the earliest range data from the McDonald

2.7 m telescope reveals the slow onset of this phenomenon, so that the cause appears to

be progressive in nature.

Lunar eclipse observations contribute a substantial clue, in that the signal

performance soars to normal levels within 15 minutes of entering full shadow. This

strongly suggests solar energy absorption leading to thermal gradients in the corner

cube prisms. The Apollo corner cubes and associated mounts were carefully designed to

minimize solar absorption and thermal gradients by a combination of total internal

reflection, recessed corner cubes, radiation-resistant substrate, and minimization of

mount conductance. Thermal simulations predicted a central irradiance of the far-

field diffraction pattern emerging from the corner cubes at full moon to be > 90% of the

peak performance. A gradient as small as ∼ 4 K from the front surface to the corner

cube vertex essentially nullifies the central irradiance [77].

The most likely explanation is the slow accumulation of a very thin layer of dust on

the reflector front surface, transported by electrostatic levitation (via photoionization

and solar wind charge deposition [78, 79]) and cascading disturbances from impacts.

Approximately half of the reflector surface would need to be covered by dust to produce

a ten-fold reduction in central irradiance, since each dust grain counts twice in a double-

pass of the front surface, and the central intensity otherwise scales as the square of

the clear area. Meanwhile, this same ∼ 50% fill-factor could result in enough front-

surface thermal absorption to generate a thermal gradient sufficiently large to cause an

additional large signal deficit.

Indeed, the eclipse observations validate this picture, in that after the initial signal

surge upon entering shadow, the return strength plummets to sub-detectable levels.

When light returns, the signal peaks again before settling back to levels typical for the

full moon. The interpretation is that initially the corner cube has a strong positive

thermal gradient owing to a heated front surface. As the solar illumination fades, the

corner cube begins to radiate its stored energy to space via the front surface, cooling

off and reversing the gradient. A zero-crossing occurs as the gradient evolves from

positive to negative, so that the reflector performance momentarily recovers during the

approximately isothermal state. When light returns, the gradient changes sign again,
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passing through zero a second time for a temporary surge in signal strength.

One final aspect of the degradation story is that Lunokhod 2 was initially observed

in 1971 to be comparable in strength to the Apollo 15 reflector. Indeed, cross section

predictions put the expected Lunokhod response midway between the 100-element

Apollo 11/14 reflectors and the 300-element Apollo 15 reflector. Today, Lunokhod 2

registers at about 10% the strength of the Apollo 15 array. Thus it is clear that

the reflectors can experience relative changes in performance over time. Meanwhile,

the three Apollo reflectors are observed to maintain a 3:1:1 ratio, and all exhibit a

comparable full-moon deficit. The Lunokhod 1 array typically performs similarly to—

if not better than—the smaller Apollo arrays. Its degradation therefore appears to

be roughly in step with that of the Apollo reflectors, making the identically-designed

Lunokhod 2 reflector the truly anomalous case.

The possibility of dynamic dust on the Moon impacts ambitions for lunar-based

telescopes or mechanical equipment. The still-functioning reflectors have often been

held up as evidence that dust is not a major issue. The recent observations described

here cast doubt on this picture.

5. The Modeling Challenge

Sitting between accurate range measurements and scientific results is a complex model

whose development must keep pace with observational advances in order to realize the

full potential of LLR. Here we describe the requisite components of a model, discuss

current capabilities, and explore improvements to be made.

5.1. Model Content/Construction

The crux of any scientific endeavor is the comparison between theory and experiment.

For LLR, the theory piece is represented by a model of the solar system incorporating

some prescription for gravity and all other physical effects that can render an impact

on the measurement. For example, Venus and Jupiter generate perturbations in the

Earth-Moon separation on the order of 1 km, Mars and Saturn at the 100 m level, and

even the largest asteroids chalk up millimeter-scale deviations. It is therefore clearly

important to have an accurate representation of solar system dynamics.

But because LLR is performed in relation to the surfaces of the Earth and Moon, it

is also necessary to provide accurate descriptions of body orientations and deformations.

In the case of the Earth, non-deterministic mass flows in the atmosphere and ocean

complicate matters. Body torques between Earth and Moon not only affect orientation,

but also couple into orbital dynamics. Tidal dissipation likewise translates into an

orbital egress of the Moon at the rate of about 38 mm yr−1. Crustal loading influences

from the ocean, atmosphere, and ground water come into play for the Earth station.

Light propagation effects must also be considered. Sensibly cast in the solar

system barycenter frame (see Section 1.4), the light path forms two legs of a generally



CONTENTS 29

asymmetric triangle. The Shapiro delay associated with propagation through solar

and terrestrial gravitational potentials must be incorporated, amounting to a ∼ 25 ns

modification to the round-trip time (7.5 m one-way equivalent due to the Sun; 0.04 m

from the Earth potential). Propagation through the atmosphere incurs a roughly 2 m

path delay that must be determined and removed to high precision.

The model itself is constructed as a parameterized physical description, many

pieces of which are numerically integrated simultaneously. For example, solar system

bodies are represented as point masses, where model parameters are initial positions

and velocities, and the associated mass values. The Earth and Moon and Sun are

treated as non-point masses, in which case the dynamical torques are jointly computed

to follow the dynamical evolution of the system. Partial derivatives of the computed

range with respect to each model parameter are calculated for each measurement epoch

so that a least-squares covariant parameter adjustment may be executed. By iterating

such adjustments, the set of LLR observations can be used to converge on a physical

description of the solar system that is optimally consistent with the data. A cute way to

put this is that millimeter-level measurement/model fidelity in the Earth-Moon range

can in principle determine the mass and position of Jupiter to a part in a million,

given the kilometer-scale influence Jupiter has on the lunar orbit. In practice, irregular

data sampling together with correlations between many model parameters compromise

complete separation of variables. Over the long term, periodic effects from solar system

bodies tend to be separable. But some parameters tend to remain highly correlated, like

the GM value for the Earth-Moon system and the semi-major axis of the lunar orbit.

5.2. Current Capabilities

Several LLR models exist in the world, sited at the Jet Propulsion Laboratory

(JPL), the Harvard-Smithsonian Center for Astrophysics (CfA), the Leibniz University

in Hannover, Germany, and at the IMCCE in Paris, France. Of these, only

the Planetary Ephemeris Program (PEP), at the CfA, is made available to the

community (and as open-source code). The JPL model currently demonstrates the best

performance, producing weighted RMS residuals for both APOLLO and OCA data in

the neighborhood of 18 mm, which is roughly a factor of two better than the other

models at present. Clearly a gap exists between estimated APOLLO uncertainties of a

few millimeters and the model residuals.

The CfA, Paris, and Hannover efforts are currently engaged in a stepwise

comparative effort to identify model differences, shortcomings, and errors. Additionally,

APOLLO data are being used to illuminate one aspect of model performance by

exploiting the fact that most observing sessions result in measurements to multiple

reflectors. This provides a nearly direct measurement of lunar orientation, the stability

of which is confirmed on occasions when several circuits of the reflectors are made in a

short period [73]. In brief, the result of this exercise is a determination of how much

adjustment is needed in the latitude and longitude librations of the Moon to bring the
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Table 3. Libration adjustment weighted RMS in nanoradians.

Model longitude adjustment (nrad) latitude adjustment (nrad)

JPL 5.1 7.3

CfA 19 23

Hannover 23 36

Paris 29 76

residuals among the reflectors in line with each other. The results are summarized in

Table 3. For reference, 1 nrad of angle translates to 1.7 mm of range at the lunar limb,

or about 0.7 mm at the typical position of an Apollo reflector. Again it is clear that JPL

has an advantage over the other efforts, although the Paris result does not represent a

least-squares-adjusted integration, but rather uses the JPL exported ephemeris, DE423.

Lunar orientation is one of many components in the model, so that adjusting the

librations in an ad-hoc manner based on APOLLO residuals does not markedly improve

the overall RMS of residuals—the main effect being to better cluster residuals from

different reflectors within each night. Night-to-night variations still dominate, and tend

to look wholly different from one model to the next.

5.3. Charted Improvements

Each LLR analysis group has its own list of known effects yet to be incorporated into

the model—many of which are only beginning to be important at the millimeter level.

By way of example, the following is a list of known effects not yet incorporated into

PEP at CfA. Other groups may be in different states with regard to these items. For

PEP, specific improvements to be made include:

• A more complete treatment of dissipation in the lunar interior, following JPL’s

lead;

• A more rigorous tidal model, applying Love numbers that depend on frequency and

spherical harmonic degree and order, aided by inputs from VLBI and GPS;

• Updating the gravitational multipoles of the Earth and Moon, using the latest data

from the GRACE and GRAIL missions, respectively;

• Improved Earth orientation handling, including feedback of LLR residuals into the

VLBI/GPS-determined data;

• Ocean loading, having approximately 3 mm horizontal RMS and 5 mm vertical

RMS at the APOLLO site, for instance;

• Atmospheric loading, having an impact of roughly 1 mm for every 3 mbar of pressure

anomaly;
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• Earth center-of-mass motion, seen via SLR to have a ∼ 1 cm amplitude at an

annual frequency.

Addressing the first three items—together with any errors discovered in the model

intercomparison between PEP and the European models—may in fact bring PEP in

line with the present JPL model capability. The remaining effects could conceivably

add up to accommodate the ∼ 2 cm residuals still exhibited by the JPL model. We

discuss them here.

Sophisticated models exist for tidal ocean loading that describe site motion at the

sub-millimeter level—easily so for APOLLO, since the semi-diurnal load tides at Apache

Point happen to be small. Table 4 presents modeled site displacements from ocean tidal

loading at the Apache Point site by the TPXO 7.0 model. Other models (GOT00 and

CSR4) produce results consistent to within about 0.5 mm.

Table 4. Ocean Loading Amplitudes at Apache Point.

Component RMS (mm) Minimum (mm) Maximum (mm)

North-South 2.26 −5.88 5.57

East-West 1.57 −3.52 4.51

Vertical 5.46 −14.71 11.91

For the various sources of non-tidal loading, the best results will come from a

combination of the global pressure fields produced by the various branches of the Global

Geophysical Fluids Center [80]: air pressure, ocean mass, and ground and surface water.

Global models for these are advancing rapidly thanks to data from the GRACE mission

[81, 82]. These can be improved by combining, for example, global models of air pressure

with the more detailed (“mesoscale”) local models that are now produced for regional

weather forecasting.

Satellite laser ranging measurements show a displacement of Earth’s center-of-mass

with respect to coordinates of the geometrical center (as defined by a network of ground

stations). This motion has a roughly annual period and an amplitude of about a

centimeter [83, 84, 85]. LLR analysis has not yet incorporated this effect. However,

the presence of the nearby a GPS station (described in Section 5.4) will allow us to

incorporate the SLR result on geocenter motion into the analysis of APOLLO data.

Additionally, radiation pressure is known to be a 3.65± 0.08 mm cosD effect that

can be applied [86]. Likewise, atmospheric propagation delay, a ∼ 2 m effect, has been

recently modeled to sub-millimeter accuracy for elevation angles above 20◦ [87, 88], and

has since been incorporated into PEP.
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5.4. Uncharted Improvements

As described, the items in the previous section are moderately well understood, in most

cases having mature models and complementary observations providing input. But

millimeter-quality LLR data will likely strain current models and demand that new

physical effects be addressed.

APOLLO is provisioned to check how well displacements are being modeled by

comparison to supplemental measurements of:

• site position by a nearby GPS station (P027 in the Plate Boundary Observatory

network; 2.5 km away); and

• local g by a superconducting gravimeter (SG) at Apache Point.

For daily estimates, the GPS positions at the P027 site typically have uncertainties

of about 1.5 mm horizontally, and 6 mm vertically. Monthly averages—where LLR

signatures are most relevant—have 0.3 mm horizontal and 1.2 mm vertical uncertainties.

Systematic errors prevent these precisions from direct translation into accuracies for

motions relative to the Earth’s center-of-mass, but the GPS data can still usefully

check models for site displacements. Fig. 19 shows data from the P027 site over four

years, binned into periods of 27.55 days (monthly periods are especially relevant to

LLR science). In the future, local GPS measurements may be used to constrain site

displacements in a simultaneous fit to LLR data.
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Figure 19. GPS data from the P027 Plate Boundary Observatory station
located 2.5 km away from the Apache Point Observatory (on a similar summit).
Data are binned in lunar-monthly units. Motions are shown relative to the
North American plate, moving at (−6.3, −11.5, −0.6) mm/yr in the north,
east, and up directions. The net motion of station P027 with respect to the
global frame becomes (−6.05, −13.35, +0.2) mm/yr. The vertical motion
indicates peak-to-peak site displacements exceeding 1 cm, highlighting the need
to incorporate geodetic measurements into millimeter-quality LLR analysis.

Likewise, precision gravimetry can complement the vertically-challenged GPS

measurements by monitoring surface gravity variations. A superconducting gravimeter

mounted on the telescope pier of the Apache Point 3.5 m telescope has the sensitivity
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on one-minute timescales to resolve 0.1 mm vertical displacements by virtue of the fact

that surface gravity diminishes by 3 nm s−2 for every millimeter of motion away from

the center of the Earth.

The SG data measure local gravity variations with very low noise, excellent

calibration stability, and low instrument drift. When the 1 Hz sampled data are filtered

to remove microseisms (typically 20 nm/s2 peak-to-peak; 5–15 s periods), the short-term

noise level is less than 0.3 nm/s2 peak-to-peak, corresponding to 0.1 mm in vertical

displacement. Fig. 20 shows tides dominating the SG signal, but removal of tides and

local atmospheric influence leaves a 60 nm/s2 peak-to-peak signal dominated by ocean

loading, which when removed reveals small signals such as the gravitational influence of

the rotating telescope dome.
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Figure 20. One week of SG data at Apache Point. The harmonic (black) line is
not a model, but raw SG data filtered to one-minute samples. The semi-periodic
(blue) line—referenced to the right-hand scale at 10× magnification—is the
residual after subtracting a tidal model and local atmospheric influence, but not
ocean or hydrologic loading signals. The flatter (red) curve is after removing
ocean loads. Steps/jumps visible in the red line are attributed to rotations
of the gravitationally asymmetric telescope dome, which can be subtracted
using a record of dome motion. A gravity deviation of 1 nm/s2 corresponds
to 0.18 mm of displacement for tides, and 0.3 mm for ocean loading, meaning
that the peak-to-peak motion represented here amounts to more than 0.5 m.

But a measurement of surface gravity only serves as a proxy to displacement.

Direct gravitational attraction of loading sources (atmosphere, ground water) complicate

the picture, and the mass redistribution accompanying tidal displacements change the

potential—and therefore the gradient of the potential, which is the measured quantity.

For tidal displacements, knowledge of the Love numbers, h and k, and the deforming

potential, W , allows conversion from a measurement of the variation in gravitational

acceleration, ∆g, to a vertical displacement, ∆z, via ∆g = −(1 + h − 3
2
k)∂W

∂r
, and

∆z = (1 + k − h)W/g. In principle, knowledge of the Love numbers could come from
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the SG and/or the LLR fit. A better source may be the recently much-improved elastic

models for the Western U.S. resulting from the U.S.A. Array seismometer project. But

some uncertainty remains in extrapolating from seismic frequencies to periods around

a month.

A modeling challenge of the future may be to apply the tidal model to

simultaneously fit the LLR data and gravimetry data. A demonstrated ability to model

the SG data—especially the long-period terms—will provide an important estimate of

the uncertainty from loading that can be included in fits to the data. Part of the SG

campaign involves occasional comparison to a visiting absolute gravimeter in order to

calibrate long-term drift in the SG instrument.

In a similar vein, while atmospheric propagation delay is well described by

measuring pressure, temperature, and humidity at the observing site and applying

a mapping function to the elevation of the observation [87, 88], horizontal pressure

gradients may foil the usual single-point pressure measurements. Using regional pressure

data (also useful for atmospheric loading corrections) has been demonstrated to improve

results [89]. If greater precision is required, incorporation of data from a kilometer-scale

barometric array may be employed to probe pressure gradients near the observatory—

which may be impacted by wind interacting with geographical features, leading to

dynamic pressure effects in the vicinity.

5.5. Periodicity and Data Span

In this section, we look at temporal aspects of the LLR measurement and its related

science goals. In the face of the large list of phenomenological influences on the

fundamental LLR measurement outlined in the preceding sections, it is important to

remember that most of the science goals outlined in Section 2 rely on periodic range

signatures. Clearly the equivalence principle signal is periodic, displaying a cosD

form at a period of 29.530589 days. This is likewise true for gravitomagnetism and

certain preferred frame effects. But even secular effects ultimately derive from periodic

observables. For instance, a variation in G alters the Keplerian relationship between

period and semi-major axis. The resulting secular change in period results in a quadratic

phase evolution. Obviously LLR provides a nearly direct measurement of the semi-major

axis, but it is also directly sensitive to the phase of the 21,000 km amplitude periodic

variation due to orbital eccentricity. Likewise, sensitivity to precession of the orbit is

provided by monitoring the phase of the large-amplitude periodic behaviors in the orbit.

The key point is that largely aperiodic phenomena like atmospheric loading,

variations in atmospheric propagation delay, or anomalous meanderings in Earth

orientation are unlikely to mimic science signals at key lunar orbit periodicities.

Obviously, greater sensitivity to interesting science signals will derive from doing the

best possible job modeling confounding influences, effectively lowering the background

against which to seek small anomalous periodic signatures.

Even with this in mind, in order to take full scientific advantage of the remarkable
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precision offered by LLR, the data must extend over a long enough span to sample long-

period terms in the lunar orbit so that secular/aperiodic trends can be distinguished

from periodic signatures and optimum amplitudes of the various periodic signatures

can be obtained. This generally requires a data span of at least a half-period—and

preferably longer—of the longest important periodic term. The various monthly periods:

draconic∗ (nodal passage: 27.212208 days); sidereal] (inertial space period: 27.321661

days); and anomalistic†† (perigee-to-perigee: 27.554551 days) combine to give periods

of 6.00 years, 8.85 years, and 18.6 years. While the complete LLR record now spans two

of these longest periods, not all of these data are of comparable precision. There is also

a 75 yr wobble in the physical libration with a ∼ 70 m amplitude [64].

How might we expect formal uncertainties to scale with data span? For the periodic

signals associated with the equivalence principle, gravitomagnetism, and preferred-frame

effects, the uncertainty should scale as T−0.5 if the sampling is approximately uniform

in time, where T is the data span. For secular drift of the lunar orbital phase due

to geodetic precession, deviations from the inverse square law, or extra-dimension-

motivated precession effects, sensitivity scales as T−1.5, where the additional power

of T comes from a longer baseline. For Ġ, which effectively gauges secular change of

the orbital radius against that of the orbital period, the uncertainty scales as T−2.5,

where two powers of T come from the aforementioned quadratic evolution of phase.

These scalings only apply to the extent that modeling capabilities are able to take full

advantage of the measurement precision.

6. Future Advances

We discuss here potential future directions for LLR, together with a qualitative

assessment of resulting scientific gains.

Lunar laser ranging has for decades stayed at the forefront of tests of gravity,

probes of the lunar interior, and determination of Earth coordinate systems. Recent

improvements to the technique have stimulated a push to improve modeling capabilities,

which are expected to produce further gains in the short term. Additionally, the LLR

enterprise has largely been confined to the northern hemisphere. Steady data flow from a

southern hemisphere station would allow better coverage of low-declination observations

and better constrain Earth orientation.

6.1. Next-Generation Reflectors

Longer-term, improvements at the lunar end offer the biggest advantage—in the form

of either new reflectors, an active transponder, or both. The current reflectors limit

∗ The draconic month describes the mean time it takes for the Moon to cross the ecliptic plane in the

ascending direction.
] The sidereal month is the time it takes for the Moon to return to the same direction in inertial space

relative to the Earth center.
††The anomalistic month refers to the lunar mean anomaly, or phase/angle with respect to perigee.
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performance in a compounded way. Most fundamentally, the finite extent of the reflector

array spreads the temporal width of the pulse by virtue of the fact that the array

normal tilts away from the line of sight by up to 10◦ due to lunar libration (Figs. 5

and 6). This spread can be as large as one nanosecond for the Apollo 15 array at

full-tilt, corresponding to a root-mean-square measurement uncertainty approaching

50 mm (330 ps; see Fig. 7). Statistical centroiding of the signal to millimeter-level range

precision requires hundreds or thousands of photons. This is how APOLLO reaches

the millimeter domain, but such an approach is not feasible for other LLR stations.

Degraded reflector performance (Section 4.2) only exacerbates this problem. Thus the

brute force approach to LLR by gathering more photons becomes more challenging with

time.

Meanwhile, the spread imposed by the tilted reflector array eliminates incentives to

improve ground-based laser pulse width or timing systems in any incremental fashion,

since these errors add in quadrature to the dominant reflector spread. Improving

APOLLO’s 100 ps laser pulse width and 20 ps timing system—even by a factor of

two—would have little discernible impact on the net timing precision, and so would

appear to be wasted effort. Installing a larger array on the Moon also has no effect,

as doubling the linear dimension doubles the temporal spread, requiring four times the

signal for statistical reduction to the same level—which is exactly what a double-sized

array delivers: no precision gain.

Simply making a sparse array of corner cubes so that each one could easily be

resolved by ∼ 100 ps laser pulses would break the logjam. Improvements in ground

systems would then have immediate impact. Halving the laser pulse width would

consequently require four times fewer photons for similar statistical precision. Most

locations on the front face of the Moon see the Earth permanently well away from local

zenith, so that a modest lateral separation on the ground (> 10 cm) is sufficient to

separate the returns unambiguously.

A few current efforts are underway to explore next-generation reflectors for the

lunar surface. Hollow corner cubes are being explored at the Goddard Space Flight

Center using an ultra-stable quartz bonding technique [90]. Somewhat further along,

work on 100 mm diameter fused silica corner cubes is in the space-environment testing

phase to verify mitigation of thermal gradients in the presence of solar illumination [91].

6.2. Transponders

Installing active laser transponders on the lunar surface would have perhaps an even

greater impact on LLR science. Replacing the 1/r4 signal loss regime with a far more

benign 1/r2 regime would allow the extensive SLR network to engage in LLR on a

routine basis. This would have tremendous impact in data volume, global distribution

(fixing the southern hemisphere deficit, for instance), tie-in to well-established geodetic

stations, and improvements in Earth surface/atmospheric models by using the Moon

as a reference object largely unaffected by non-gravitational forces—unlike satellites.
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In this context, transponders work best in asynchronous mode, rather than echoing

detected incoming signals. This permits the transponder to transmit a steady pulse

train tied to a good clock while recording times of incoming signals with respect to this

clock. The asynchronous mode has much greater noise immunity and thermal stability

than echo-based techniques. Such transponders also pave the way for interplanetary

laser ranging. The scientific benefits and hardware requirements for one such system

has been explored in the context of laser ranging to Phobos [92].

6.3. Impact on Science

On its face, improvement of LLR measurement precision as facilitated by new reflectors,

transponders, and concomitant ground station upgrades has the potential to sharpen

our constraints on (or find deviations in) gravitational physics by a corresponding

(equal) factor. Time scales for improvement vary for different science parameters, as

discussed in Section 5.5, but in principle a factor-of-ten reduction in LLR measurement

uncertainty over a timescale of years to a decade has the potential to deliver factor-of-ten

improvements in LLR science.

Yet recent experience demonstrates that improving LLR measurement precision

is not by itself sufficient to realize scientific gains. The model must also keep pace.

Sections 5.3 and 5.4 provide a glimpse into the host of phenomena one must consider in

plotting a course from centimeter-level to millimeter-level LLR accuracy. Progressing

into the sub-millimeter regime will undoubtedly invoke a similarly-sized—if not larger—

list of concerns that may or may not be tractable. Even so, the aforementioned

reflector/transponder upgrades would permit a greater global distribution of ever-

improving LLR-capable stations, in addition to relieving the current burden on

statistical reduction of the dominant tilt-induced timing uncertainty. Since many of the

challenges confronting LLR today relate to Earth phenomenology, widespread global

participation may be the best way to characterize these influences and reduce their

impact on LLR science goals. Improved reflectors and/or transponders may provide the

most robust route for future improvements in LLR science.

7. Conclusion

Since its inception, LLR has established itself as a mainstay of precision measurement

relating to gravitation, physics of the Earth-Moon system, and coordinate systems. The

basic measurement is general enough to have broad reach across many dimensions of

physics. Within the gravity sector, LLR provides the very best probes of the equivalence

principle, the time-rate-of-change of the gravitational constant, gravitomagnetism,

geodetic precession, the inverse square law, preferred frame effects, and is also well

positioned to test new ideas in physics. For the Earth-Moon system, dissipative

processes in the lunar interior expose a liquid core, LLR measurements contribute to

knowledge of Earth orientation and coordinate systems, and tidal dissipation on Earth
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is seen via the egress of the lunar orbit.

Despite order-of-magnitude degradation of reflector signal strength, LLR data are

now gathered at unprecedented rates and approaching one-millimeter range precision

as a consequence. Rediscovery of the long-lost Lunokhod 1 reflector brings the total

available reflectors on the Moon up to five. At this time, the lunar reflectors are

the limiting source of temporal uncertainty in the ranging error budget, so that new

reflectors on the lunar surface would offer a dramatic improvement in range precision

capability. Additionally, new reflectors or even transponders on the lunar surface could

open up LLR to dozens of satellite laser ranging stations around the world, vastly

improving data volume, global distribution, and interest in the science.

Alongside the challenge of acquiring accurate lunar range measurements, the

sophisticated model that accounts for every relevant influence must see concomitant

improvements. Currently in the process of adapting to millimeter-quality data after

decades of centimeter-quality measurements, newly improved limits on science from

LLR may be around the corner.
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Acronyms Used in Text

APD Avalanche Photodiode

APOLLO Apache Point Observatory Lunar Laser-ranging Operation

AU Astronomical Unit (1.496× 1011 m)

CfA Harvard-Smithsonian Center for Astrophysics

CSR4 Center for Space Research ocean loading model 4

DGP Dvali, Gabadadze, Porrati

DORIS Doppler Orbitography and Radiopositioning Integrated by Satellite

EIH Einstein-Infeld-Hoffmann

EP Equivalence Principle

FWHM Full-Width and Half-Maximum

GOT00 Global Ocean Tide ocean loading model

GPS Global Positioning System

GR General Relativity

GRACE Gravity Recovery and Climate Experiment (Earth)

GRAIL Gravity Recovery and Interior Laboratory (Moon)

ICRF International Celestial Reference System

IERS International Earth Rotation and Reference System Service

IMCCE Institut de mecanique celeste et de calcul des ephemerides

JPL Jet Propulsion Laboratory

LAGEOS Laser Geodynamics Satellites

LLR Lunar Laser Ranging

LOLA Lunar Orbiter Laser Altimeter

LRO Lunar Reconnaissance Orbiter

LUNAR Lunar University Network for Astrophysical Research

MLRS McDonald Laser Ranging System

NASA National Aeronautics and Space Administration

OCA Observatoire de la Côte d’Azur

PEP Planetary Ephemeris Program

PPN Parameterized Post Newtonian

RMS Root-Mean-Square

SBR Signal to Background Ratio

SEP Strong Equivalence Principle

SG Superconducting Gravimeter

SLR Satellite Laser Ranging

SME Standard Model Extension

SSB Solar System Barycenter

TDC Time to Digital Converter

TPXO TOPEX/Poseiden-based ocean loading model

UT1 Universal Time offset 1

UTC Coordinated Universal Time

VLBI Very Long Baseline Interferometry

WEP Weak Equivalence Principle

YAG Yttrium aluminum Garnet
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