
Higher order FEM numerical integration on GPUs
with OpenCL

1Przemysław Płaszewski, 12Krzysztof Banaś, 2Paweł Macioł
1AGH University of Science and Technology,

Department of Applied Computer Science and Modelling,

al. Mickiewicza 30, 30-059 Kraków, Poland
2Cracow University of Technology,

Insitute of Computer Modelling,

ul. Warszawska 24, 31-155 Kraków, Poland

Abstract—Paper presents results obtained when porting FEM
2D linear elastostatic local stiffness matrix calculations to Tesla
architecture with OpenCL framework. Comparison with native
NVIDIA CUDA implementations has been provided.

I. MOTIVATION

I
N FINITE element simulations usually two computation

stages most significantly impact performance of the whole

process:

• obtaining global stiffness matrix

• solving system of linear equations

In case of non-linear, higher order element geometry, higher

order approximations and p and hp-adaptations, process of

obtaining global stiffness matrix requires computationally

intensive separate calculations of local (element) stiffness

matrices. For some problems it can be most time consuming

stage of FEM calculations.

Aim of our work is parallelizing this stage utilizing modern

graphics processor units (GPUs) and OpenCL platform.

The paper is organized as follows. The first two sections

are devoted to the definition of the problem of FEM numerical

integration. In the third section we summarize the problem in

terms of requirements for numerical algorithms. Then we show

how to design parallel algorithms that solve the formulated

computational problem on modern GPUs. The results of

experiments close the paper.

II. FINITE ELEMENT NUMERICAL INTEGRATION

The standard procedure in FEM computations consist in

obtaining weak formulation of a problem, discretizing prob-

lem domain Ω into finite elements and utilizing appropriate

basis functions—constructed from element shape functions—

to create a system of linear equations, with the global stiffness

matrix as the system matrix, that is then solved to provide

approximate solution.

Generation of global stiffness matrix is usually performed

by calculating integrals over finite elements, then assembling

obtained that way local matrices into global one. Since in-

tegrals evaluation over multiple different element geometries

(possibly curved) would pose a problem, elements are mapped

to a reference element with simple geometry and integrals are

calculated over its area. Every element is processed indepen-

dent of the others thus many can be calculated in parallel.

III. MODEL PROBLEM

We chose 2D linear elastostatics problem. As a model

finite element we use quadrilateral with curved, second order,

geometry. Solution is approximated with hierarchical shape

functions up to order p = 7, constructed from tensor products

of 1D Lobato hierarchical functions [2]. Reduced space was

used with number of shape functions equal to

n = 4 + 4(p− 1)+ + (p− 2)(p− 3)+/2

where q+ denotes max(q, 0). Local stiffness matrix dimension

is equal to 2n, where n is number of shape functions for a

particular order p. Matrix entries are results of calculating the

integral [1]

k
(e)
IJ =

∫∫

Ωref
(([D∗]{ϕI})

T [E][D∗]{ϕJ}) | J | dξdη (1)

I, J = 1, 2, ..., 2n

where k
(e)
IJ is (I, J) matrix entry, Ωref is [−1, 1] × [−1, 1]

reference quadrilateral, [E] is 3 × 3 material matrix, | J | is

the determinant of the Jacobian matrix of geometry transfor-

mation, {ϕI} and {ϕJ} are columns of 2n×2 matrix of shape

functions. [D∗] is the matrix differential operator

[D∗] =





∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x





where

∂

∂x
= J∗

11

∂

∂ξ
+ J∗

12

∂

∂η
∂

∂y
= J∗

21

∂

∂ξ
+ J∗

22

∂

∂η

and [J∗] is inverse Jacobian matrix.

Integration over reference quadrilateral is done using Gauss

quadratures where the double integral is replaced by double

sum
∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη ≈

ng
∑

i=1

ng
∑

j=1

f(ξi, ηj)WiWj

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 337–342

ISBN 978-83-60810-27-9

ISSN 1896-7094

978-83-60810-27-9/09/$25.00 c© 2010 IEEE 337

In case of bilinear mapping, integration is accurate when

number of gauss points ng in both dimensions is not less

than (p+ 1)2 where p is order of approximation (i.e. highest

polynomial order in shape functions set).

IV. COMPUTATION OVERVIEW

Evaluating the double integral boils down to calculating

double sum, which can be achieved with single loop over gauss

points in two dimensions. In every iteration, for every entry in

a matrix, the result of calculating (1) is multiplied by Gauss

weights and added to the (first zeroed) element stiffness matrix

matrix.

The integrated formula differs for different matrix entries

only in shape functions used—for every entry a distinct pair of

shape functions is evaluated (taking into account the symmetry

of a matrix).

Jacobian determinant and the inverse of Jacobian matrix

(which appears in [D∗] operator) are the same for all matrix

entries thus can be calculated once per iteration.

Assuming constant Young modulus and Poisson ratio over

a single finite element, material matrix [E] can be calculated

once per element.

Calculation of single local stiffness matrix requires:

• single calculation of material matrix [E]
• ng calculations of Jacobian determinant and inverse of

the Jacobian matrix, where ng is number of gauss points

• ng
n(n+1)

2 calculations of entries (1), where n is matrix

dimension (symmetric matrix case)

V. PARALLEL NUMERICAL INTEGRATION IN OPENCL

Finite element local stiffness matrices are calculated inde-

pendent of each other therefore can be carried out concurrently.

The process of calculating a single local stiffness matrix

can also be parallelized by simultaneous computations of its

entries. Therefore we can identify two possible parallelization

levels:

• processing finite element matrices

• processing matrix entries

This naturally fits to OpenCL parallelization model [4] of:

• work-groups executed concurrently, independent of each

other

• work-items executed concurrently, cooperating inside

each work-group

Our implementation takes advantage of above similarities

and divides computations as follows:

• each work-group is responsible for processing single

finite element

• work-item is responsible for calculating one or more

matrix entries

Despite the fact that the OpenCL platform aims to provide

unified execution environment for broad range of hardware

solutions like multi-core CPUs, graphics processors and ac-

celerators like IBM Cell, programmer still needs to realize

differences between them and optimize his code accordingly.

Our implementation targets Nvidia Tesla architecture.

Calculations on device, in our case GPU, are directed by

host CPU. Its role is to upload elements data into device global

memory, execute kernel and download output matrices when

kernel finishes. If not all elements can be processed in single

kernel launch—for example due to limited amount of global

device memory—whole computations can be divided across

multiple sequences of:

• uploading data to device memory

• executing kernel

• downloading data

Kernel launch is non-blocking therefore host can process

remaining batches of elements while waiting for GPU to finish,

thus increasing overall performance.
Parallel calculations overview is presented on Fig.1.
Each work-group reads the data representing particular finite

element from global device memory. Then work-items in

cooperation evaluate matrix entries and store them in local

memory—shared by all items in a work-group. When done,

matrix is copied from local to global device memory accessible

by host.
Data that are common for all finite elements i.e. gauss points

and weights is calculated once on CPU, stored in constant

memory and available for all work-groups. Constant memory

is cached on a GPU and well serves the purpose of supplying

the multiprocessors with the data that are the same for all

elements of a given order p.
During the execution work-groups are queued and succes-

sively consumed by device computation units. Each compu-

tation unit—in our case a GPU multiprocessor—can execute

more than one work-group at a time, however splitting single

work-group across many computation units is not allowed.
The number of simultaneously processed work-groups on

single computation unit (resident work-groups) depends on

factors like consumption of registers, consumption of mul-

tiprocessor local memory and size of a work-group. GPU

scheduling hardware will send as much work-groups as pos-

sible for concurrent execution on single multiprocessor until

there are no resources left. In situation when number of

consumed registers, shared memory or number of work-items

exceeds the half of maximum available for particular hardware,

only one work-group at a time will be resident on single

multiprocessor.
Optimal use of multiprocessor resources is important to

achieve high occupancy i.e. high number of work-items from

one or more work-groups executed concurrently on mul-

tiprocessor. In our case resource consumption depends on

approximation order—the higher is the order p the bigger is

the local stiffness matrix and more local memory is needed

by work-group during the computations.
Resource limits for Nvidia GPU devices of compute capa-

bility 1.3 (all cards we tested) are:

• Multiprocessor registers: 16384

• Local memory per multiprocessor: 16KiB

• Maximum number of work-items in work-group: 512

• Maximum number of resident work-items on multipro-

cessor: 1024

338 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Fig. 1. Parallel calculations on GPU.

Available registers are uniformly distributed among resident

work-items executed on multiprocessor and local memory is

divided across resident work-groups.

In order to generate local stiffness matrix for single finite

element, following information needs to be supplied (23 float

values in total):

• geometry of quadrilateral (coordinates of its vertices and

second order geometry mapping nodes)

• edge orientations

• material information (Young modulus, Poisson ratio)

We have padded each element data to 32 and placed all

elements data in contiguous region of global memory in order

to achieve specific coalesced access pattern [3] by every work-

group. For the same reason we also used padding for output

matrices.

Every work-group (i.e. all its work-items executing in paral-

lel) performs single coalesced read from input global memory

region in the beginning of computations to get element data

and coalesced writes at the end of execution to store generated

matrix.

Total size of input data is

32 ∗ sizeof(float) ∗ numelems

Total size of output matrices is

matpaddedsize(p) ∗ sizeof(float) ∗ numelems

where matpaddedsize(p) is matrix size with padding and

depends on order of approximation p. Due to symmetry we are

only calculating and storing upper-half matrices, thus reducing

both local and global memory usage. Sizes of matrices for

different approximation orders are presented in table I.

Depending on the order p different kernel is being executed

on the device. Flow of computation for every kernel is similar.

The differences come from different number of gauss points,

different set of hierarchical shape functions and different sizes

of matrices and manifest themselves in:

• amount of local memory needed to compute stiffness

matrix

• number of iterations over gauss points

• amount of local memory needed to compute derivatives

of shape functions in every Gauss point

• number of matrix entries per work-item

• number of work-item engaged in calculations of stiffness

matrix (which is less-or-equal to the work-group size)

For every kernel we configured computations in such way

not to exceed the available computation unit resources (regis-

ters and local memory), maximize global memory throughput

with coalesced reads and writes, maximize computation unit

occupancy and minimize divergent branches inside groups of

32 consecutive work-items called warps.

Execution configuration included proper sizing of work-

groups and defining number of matrix entries calculated by

single work-item. We experimented with broad range of con-

figurations for every kernel in order to chose optimal ones—

those are presented in table I.

In case of higher p orders, limited multiprocessor

resources—especially local memory size of only 16KiB on

Tesla architecture—prevented simultaneous execution of more

than one work-group thus reducing multiprocessor occupancy.

We implemented kernels for orders of approximation up

to 7—for higher orders half-matrix size is bigger than amount

of local memory available on Tesla architecture and different

approach to computations would be needed.

VI. KERNEL COMPUTATIONS

Main steps of kernel execution are:

1) Zero matrix in local memory (all work-items)

2) Load element data from global memory (first warp)

3) Calculate 3× 3 material matrix [E] (single work-item)

4) Loop over gauss points:

a) Calculate values of shape functions derivatives

(single work-item)

PRZEMYSŁAW PASZEWSKI, KRZYSZTOF BANAŚ, PAWEŁ MACIOŁ: HIGHER ORDER FEM NUMERICAL INTEGRATION ON GPUS WITH OPENCL 339

Fig. 2. Work-group execution.

b) Calculate Jacobian determinant and the inverse of

Jacobian matrix (single work-item)

c) Calculate stiffness matrix contributions (in

parallel—number of work items depends on

kernel—see table I)

5) Upload matrix to global memory (all work-items)

Fig. 2 presents the calculation flow for a work-

group. Black horizontal bars indicate OpenCL

CLK_LOCAL_MEM_FENCE synchronization barriers.

Those are needed to ensure that all calculations from previous

steps are done before utilizing their results in steps that

follows. We experimented with disabling synchronizations

in order to observe their influence on overall algorithm

performance—execution times dropped by not more than 5%.

Material matrix [E], Jacobian determinant, inverse of Jaco-

bian matrix and shape function calculations never took more

than 10% of total execution time. Attempts to spread shape

functions calculations across more work-items and perform

them in parallel resulted in higher register consumption per

work-item thus reducing occupancy and decreasing perfor-

mance for most kernels.

In order to effectively utilize limited local memory, local

stiffness half-matrix is stored in linear contiguous fashion row

by row, every consecutive row being one shorter than previous.

Every work-item in a work-group is identified by its local

id obtained with get_local_id device function. Assignment

of matrix entries to distinct work-items relies on mapping

Fig. 4. Execution times for 10000 elements.

Fig. 5. Execution times for 10000 elements (continued).

formula involving square root operation. Fig. 3 presents work-

items assignments for kernel p = 3. For example work-item

with id 44 is responsible for calculating five matrix entries at

positions (22,11), (23,11), (12,12), (13,12) and (14,12). Work-

items with numbers from 60 to 63 are left idle during matrix

calculations, but do participate in writing padded matrix to

global memory when done.

Matrices in every kernel are padded to the nearest multiply

of 32 and their size is multiply of work-group size to achieve

coalesced writes.

VII. RESULTS

Figures 4 and 5 show results we obtained while calculating

104 matrices on 3 NVDIA GTX series graphics cards. For

comparison we performed tests of cache optimized sequen-

tial code run on single Nehalem core of Intel Xeon E5520

processor.

Best performing kernel (p = 4) achieved 5.3 speedup over

sequential implementation. Lowest speedups of 3.3 and 3 were

observed with kernels for p = 1 and p = 7 respectively.

For GPU implementation timings include transfers of

data between host and device through PCI-Express bus

(clEnqueuReadBuffer and clEnqueueWriteBuffer host

functions). Data transfer is amortized—especially for lower

order kernels—only when number of processed elements is

high enough—for example for p = 1 and 1000 elements

transfers take 25% of total execution time while for p = 5
only 4%.

340 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Fig. 3. Work-items to matrix entries assignment for p = 3.

TABLE I
KERNEL PARAMETERS

p=1 p=2 p=3 p=4 p=5 p=6 p=7

Work-group size 64 192 64 128 192 384 448

Work-items involved in matrix generation 36 136 60 119 181 366 418

Matrix dimension 8 16 24 34 46 60 76

Padded matrix entries number 64 192 320 640 1152 1920 3136

Register consumption per work-item 12 13 18 19 20 19 18

Local memory consumption per work-group (bytes) 568 1208 1848 3288 5528 8824 13944

Fig. 6. Execution times for different elements number on GTX 285.

Figures 6 and 7 present execution times with varying num-

ber of elements processed. As expected execution time scales

in linear fashion with elements number—as every element is

represented on device by work-group and work-groups are

queued for execution on multiprocessors.

Fig. 7. Execution times for different elements number on GTX 285
(continued).

Of 3 cards tested 2 (GTX 275 and GTX 285) have the same

number of multiprocessor (32) and differ in global memory

bus bandwidth—448 bit and 512 bit respectively. Performance

difference between those two cards is minimal as compared to

PRZEMYSŁAW PASZEWSKI, KRZYSZTOF BANAŚ, PAWEŁ MACIOŁ: HIGHER ORDER FEM NUMERICAL INTEGRATION ON GPUS WITH OPENCL 341

Fig. 8. Performance comparision of OpenCL and CUDA with 10000 elements
on GTX 285.

Fig. 9. Performance comparision of OpenCL and CUDA with 10000 elements
on GTX 285 (continued).

the difference between cards with different number of multi-

processors (GTX 260 with 27 and GTX 275 and GTX 285 both

having 30). Our implementation isn’t memory constrained

since all operations except single input and output coalesced

writes are performed on local multiprocessor memory and the

biggest size of transferred batch is only 13KiB for matrix of

p = 7.
One can expect linear performance scaling with increasing

number of GPU multiprocessors. Number of simultaneously

processed work-groups on all multiprocessors is given as:

Rwg ×M

where Rwg is number of resident work-groups per multi-

processor and M number of multiprocessors. Let t1 be the

time that takes to process Rwg × M1 work-groups on GPU

G1 having M1 multiprocessors. Similarly t2, M2 for GPU

G2. Assuming identical performance (i.e same clock rate and

architecture) of multiprocessors in both GPUs t1 = t2 = t.
Total time of processing N work-groups on GPU G1 is:

T (G1, N) =
N

M1 ×Rwg

t

and on G2:

T (G2, N) =
N

M2 ×Rwg

t

Speedup calculated as a ratio of those two times:

T (G1, N)

T (G2, N)
=

N
M1×Rwg

t

N
M2×Rwg

t
=

M2

M1

indicates linear scaling with number of multiprocessors.

According to the above statement observed speedup should

be not less than 11% between GTX 260 and GTX 275

processors. Our benchmarks demonstrate speedup in fact being

higher—especially for lower orders of approximation—due to

increased GPU clock-rate and better system components (i.e.

CPU, motherboard) on machine equipped with GTX 275 card.

We compared OpenCL performance with native NVIDIA

CUDA 3.0 implementations (see Figures 8 and 9) of our

kernels. For p = 1 and p = 2 kernels were compiled with

same register consumptions on both platforms and results are

close. Initial compilation of other kernels resulted in increased

register usage of OpenCL kernels as compared to CUDA.

Since higher register consumption resulted in much lower

occupancy and significantly decreased performance we forced

OpenCL compiler to use the same number of registers as in

the CUDA build. Consumption decreased, but unfortunately

OpenCL compiler was unable to achieve this without spills

to slow private memory thus slightly decreasing performance

(however not that much as with increased register consump-

tion).

Overall performance of OpenCL in our case is comparable

to CUDA, except when compiler is not able to optimize its

output the way more mature CUDA tools do.

REFERENCES

[1] Barna Szabo and Ivo Babuska, Finite Element Analysis, Wiley-
Interscience; 1991.

[2] Pavel Solin and Karel Segeth and Ivo Dolezel, Higher-Order Finite

Element Methods, Chapman & Hall/CRC; 2003.
[3] Mark Harris, “Optimizing CUDA,” in Supercomputing conference, Reno,

NV, 2007.
[4] Khronos OpenCL Working Group, The OpenCL Specification 1.0, 2009.

342 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

