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CONCLUSIONS
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BENCHMARK RESULTS  AND COMPARISON OF CALCULATION SPEEDS: vs.1 GPU  12 CPU cores

Simulations have been performed on µMAG standard problem #4 with:

      various discretization  -  varying number of discretization nodes
     

different complexity  -   regular and irregular mesh

We benchmarked the simulation times on two different systems:

� CPU system: dual hex-core Intel X5670 2.93 GHz, 12 MB L3 cache

� GPU system: nVIDIA GTX480 in a 

� The speed-up for the solver is calculated from the average duration per solver iteration for the calculation of U1

� The speed-up for the ODE-integrator is calculated from the overall runtime of the integrator for 100ps of 

simulation time. 

� All data (except the elements of the dense matrix) are stored and processed in double precision.

� Effective calculation speeds are calculated using the original matrix sizes, disregarding zero padding

� Since the main part of the calculations is performed by the GPU, multi-GPU systems can perform multiple jobs 

without significant speed loss. This was confirmed in different runs.

Intel Core 2 quad 2.4 GHz based PC
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The calculation of the magnetostatic potential is done in three steps[1]:

 1. An iterative solution of a sparse linear system for U . 1

 2. A dense matrix or hierarchical matrix-vector multiplication to obtain the values of U  on the boundary of the2
 magnetic region.

 3. An iterative solution of sparse linear systems for U  within the magnetic region. 2
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The magnetostatic field can be calculated as a gradient field of a scalar potential:
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The scalar potential can be computed from:

The potential is split into two parts,

where U  is the solution of the inhomogeneous Neumann problem, while 1

boundary conditions.
U  satisfies Laplace’s equation with Dirichlet 2

FEM - BEM FOR MAGNETOSTATIC FIELDS WITH SCALAR POTENTIAL
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inside the magnetic volume.

outside of the magnetic volume.

TetraMag - FINITE ELEMENT MICROMAGNETIC SIMULATOR

fully three-dimensional 

high geometric flexibility (hybrid FEM/BEM scheme)

magnetostatic coupling (e.g., arrays of  nanomagnets)

easily portable (source code written in standard C)

OpenMP parallelized 

ported to GPU architecture

General-purpose finite-element algorithm to simulate the magnetization dynamics 

and the domains in ferromagnetic nanostructures.
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EQUATION OF MOTION

Effective field:

e: local energy density: Zeeman, exchange, 
magnetostatic and anisotropy energy density

Landau-Lifshitz-Gilbert equation:

INTRODUCTION ADAPTION OF THE  MICROMAGNETIC SIMULATOR TO CUDATetraMag
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3.: Sparse Matrix divided into warp-size-wide blocks 
(here warp-size=4 for demonstrative purposes)

1 2 3 4

5 ( )1 3 ( )2 7 ( )3 2 ( )4

4 ( )3 1 ( )5 2 ( )2 9 ( )1

8 ( )6 0 (1) 4 ( )6 0 (1)

5 6 0 0

1 ( )5 6 ( )6 0 (1) 0 (1)

3 ( )3 2 ( )2 0 (1) 0 (1)

Zero-Padding

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

value 5 3 7 4 4 1 2 9 8 0 4 0 1 6 0 0 3 2 0 0

column 1 2 3 4 3 5 2 1 6 1 6 1 5 6 1 1 3 2 1 1

block start 0 12 20

1 2 3 4 5 6

1 5 9

2 3 2 2

3 4 7 3

4 2

5 1 1

6 8 4 6

1 2 3 4 5 6

1 5 4 8

2 3 1

3 2 7 4

4 9 2

5 3 1

6 2 6

1.: Original Sparse Matrix  2.: Sparse Matrix transposed
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With the matrix generated from an , 
the access is seemingly random, a disadvantage 
especially for the GPU due to its small caches.

irregular mesh

TEST SETUP

The adaption of the existing code consists of three major parts:

� Matrix is preprocessed for coalesced memory access

� Blocks of almost constant lenght 

(no need for Hybrid schemes [7])

� Reorder elements to optimize read-cycles/caching

� Overall flow control stays on CPU

� Zero-memcpy implementation for passing results

� Selection of fastest kernels based on problem structure

� Called for the calculation of U1 and U2

� Performed on GPU for up to ~40k boundary nodes

� For more boundary nodes:

hierarchical-matrix-vector multiplication on CPU 

(GPU-conversion: work in progress)

� Preprocessing similar to sparse matrices

� Lines are zero-packed and sorted by length to reduce

zero-padding in blocks

� Called for the calculation of U2

� Performed by CVODE from the Sundials Package [5]

� Includes field calculations as well as vector operations 

using the “NVector” structure supplied with Sundials

� ”NVector” and field calculations were ported to CUDA

� Comparisons are done against an OpenMP enhanced 

version of the originally serial “NVector”

Part 1: Solver (linbcg)

Part 2: Dense-Matrix-Vector Multiplication

Part 3: Time Integration

4.: Blocks are then stored sequentially in device memory and referenced. 
Multiple warp-sized blocks are combined to the thread-blocks of the 
actual operations. (note: reordering step not shown here)

Preprocessing the Sparse Matrix:

For the , the access to the vector 
elements during the matrix-vector multiplication 
follows certain patterns with strong data locality 
where many reads can be combined.

regular mesh

� The computation speed of the GTX480 equals or exceeds that of the 12-core setup already at relatively small problem sizes

� The initial advantage of the CPU’s large caches wears off as the problem size outgrows it

� With increasing problem size, the larger overhead for the GPU calculations becomes less significant

� The GPU’s speed advantage for regular problems increases for all problems that fit the available memory size

� For large problems, the solver operates near the theoretical memory bandwidth limit of the GPU

� Due to caching of the Fermi based architecure, the memory throughput of the dense-matrix-vector multiplication exceeds 

the posted bandwidth limit of the card

The mesh type directly defines the structure of the sparse matrices and the performance of the calculations for both 
the CPU and GPU strongly depends on whether the mesh is  regular or irregular. 

Complex magnetic structures - multiple length scales

Micromagnetic structures can display a high complexity as a result 
of interacting length scale (vortices, domain walls, domains).

This complexity represents a challange for micromagnetic 
simulations.
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What we obtain:

� Complex static and dynamic magnetic structures (e.g. vortices, spin waves ...)

� Solutions without any simplifying assumption on the magnetic structure

� Possibility of direct comparision with experimental results
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What we do:

� Fully three-dimensional finite element modelling - FEM - (tetrahedral  discretization cells)

� Calculate effective fields, energy densities etc. at each discretization point (node)

� Calculate the current-density distributions and Oersted fields in general geometries

� Solving Poisson’s equation at each time step

� Integrate the Landau-Lifshitz-Gilbert differential equation

� Solve large sets of coupled integro-differential equations

Micromagnetic simulations is a powerful numerical tool for the study of magnetism in mesoscopic samples. 

�GPU systems are very efficient for the Finite Element Micromagnetic simulations. The simulation time can be considerably 

reduced.

�The gain in  computation speed generally  increases with increasing numbers of discretization nodes. It exceeds the perfor-

mance of the fastest available PC-based systems already at small  problem sizes

�The GPU implementation allows us to systematically study the magnetization dynamics in large magnetic samples with 

reasonable computation time.

�Using more than one GPU per computer without performance penalty significantly increases cost efficiency.

�Bigger and faster device memory as well as bigger caches would be desirable to further utilize the GPUs high  

calculation throughput

Massively Parallel  Micromagnetic FEM 
Calculations with Graphical Processing
Units (GPUs)

Effective Computation Speed Solver (U1)
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Speed-Up Solver (U1)
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Speed-Up ODE
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Eff. Speed Dense Matrix

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

5000 10000 15000 20000 25000

boundary nodes

G
F

L
O

P
S

0.00

24.00

48.00

72.00

96.00

120.00

144.00

168.00

192.00

216.00

240.00

G
B

y
te

s
/s

GPU reg. CPU reg.

CPU irreg. GPU irreg.

Speed-Up Dense Matrix

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

5000 10000 15000 20000 25000

boundary nodes

S
p

e
e

d
-U

p
fa

c
to

r


	Page 1

